Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(4): e0010862, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043542

RESUMO

Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.


Assuntos
Leishmania , Leishmaniose Cutânea , Phlebotomus , Psychodidae , Animais , Humanos , Phlebotomus/parasitologia , Psychodidae/parasitologia , Leishmania/genética , Genômica
2.
Pest Manag Sci ; 77(7): 3135-3144, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33644981

RESUMO

BACKGROUND: Culex quinquefasciatus resistance to the binary toxin from Lysinibacillus sphaericus larvicides can occur because of mutations in the cqm1 gene that prevents the expression of the toxin receptor, Cqm1 α-glucosidase. In a resistant laboratory-selected colony maintained for more than 250 generations, cqm1REC and cqm1REC-2 resistance alleles were identified. The major allele initially found, cqm1REC , became minor and was replaced by cqm1REC-2 . This study aimed to investigate the features associated with homozygous larvae for each allele to understand the reasons for the allele replacement and to generate knowledge on resistance to microbial larvicides. RESULTS: Homozygous larvae for each allele were compared. Both larvae displayed the same level of resistance to the binary toxin (3500-fold); therefore, a change in phenotype was not the reason for the replacement observed. The lack of Cqm1 expression did not reduce the total specific α-glucosidase activity for homozygous cqm1REC and cqm1REC-2 larvae, which were statistically similar to the susceptible strain, using artificial or natural substrates. The expression of eight Cqm1 paralog α-glucosidases was demonstrated in resistant and susceptible larvae. Bioassays in which cqm1REC or cqm1REC-2 homozygous larvae were reared under stressful conditions showed that most adults produced were cqm1REC-2 homozygous (69%). Comparatively, in the offspring of a heterozygous sub-colony reared under optimal conditions for 20 generations, the cqm1REC allele assumed a higher frequency (0.72). CONCLUSION: Homozygous larvae for each allele exhibited a similar resistant phenotype. However, they presented specific advantages that might favor their selection and can be used in designing resistance management practices. © 2021 Society of Chemical Industry.


Assuntos
Toxinas Bacterianas , Culex , Proteínas de Insetos/genética , alfa-Glucosidases/genética , Alelos , Animais , Bacillaceae , Culex/enzimologia , Culex/genética , Larva/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA