Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 12(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36832788

RESUMO

Along with orange and mandarin, grapefruit production in Florida has declined sharply due to Huanglongbing (HLB), or citrus greening disease, caused by Candidatus Liberibacter asiaticus (CLas). HLB affects the volatile profiles of juice and peel oil in oranges, but there is limited information on grapefruit. In this research, 'Ray Ruby' grapefruit were harvested in 2020 and 2021 from healthy (HLB-) and HLB-affected (HLB+) trees. Peel oil was extracted by hydrodistillation, and the volatiles were analyzed by direct injection of the oil samples into gas chromatography-mass spectrometry (GC-MS). Volatiles in the juice were analyzed by headspace (HS)-solid-phase microextraction (SPME) coupled with GC-MS. HLB significantly altered the volatile profiles of peel oil and juice in 'Ray Ruby' grapefruit. Juice samples of HLB+ fruits had lower decanal, nonanal, and octanal, important citrus juice flavor compounds. HLB+ samples also showed reduced content of nonterpene compounds, other aliphatic and terpene aldehydes, and terpene ketones. Ethanol, acetaldehyde, ethyl acetate, and ethyl butanoate were increased in HLB+ juice samples, indicating an HLB-induced stress response. The most abundant compounds D-limonene and ß-caryophyllene, as well as other sesquiterpenes, were increased in HLB+ juice and peel oil samples. On the other hand, the oxidative/dehydrogenated terpenes were increased by HLB in peel oil but decreased in the juice sample. Nootkatone, the key grapefruit volatile was consistently reduced by HLB in both peel oil and juice samples. The impact of HLB on nootkatone deteriorated the quality of both juice and peel oil in grapefruits.

2.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012564

RESUMO

Huanglongbing (otherwise known as HLB or greening) is currently the most devastating citrus disease worldwide. HLB is primarily associated with the phloem-inhabiting bacterium 'Candidatus Liberibacter asiaticus' (CLas). Currently, there are no citrus species resistant to CLas. Genetic transformation is one of the most effective approaches used to induce resistance against plant diseases. Antimicrobial peptides (AMPs) have shown potential breakthroughs to improve resistance to bacterial diseases in plants. In this paper, we confirm the Agrobacterium-mediated transformation of Pera sweet orange expressing the AMP sarcotoxin IA (stx IA) gene isolated from the flesh fly Sarcophaga peregrina and its reaction to CLas, involving plant performance and fruit quality assessments. Four independent transgenic lines, STX-5, STX-11, STX-12, and STX-13, and a non-transgenic control, were graft-inoculated with CLas. Based on our findings, none of the transgenic plants were immune to CLas. However, the STX-5 and STX-11 lines showed reduced susceptibility to HLB with mild disease symptoms and low incidence of plants with the presence of CLas. Fruit and juice quality were not affected by the genetic transformation. Further, no residues of the sarcotoxin IA protein were found in the juice of the STX-11 and STX-12 fruits, though detected in the juice of the STX-5 and STX-13 lines, as revealed by the immunoblotting test. However, juices from all transgenic lines showed low traces of sarcotoxin IA peptide in its composition. The accumulation of this peptide did not cause any deleterious effects on plants or in fruit/juice. Our findings reinforce the challenges of identifying novel approaches to managing HLB.


Assuntos
Citrus sinensis , Citrus , Rhizobiaceae , Citrus/microbiologia , Citrus sinensis/metabolismo , Frutas , Liberibacter , Peptídeos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rhizobiaceae/genética
3.
Front Plant Sci ; 13: 915889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720581

RESUMO

The Brazilian citrus orchards are comprised by few genotypes, which increases the risk of pest and disease outbreaks. The diversification of sweet oranges (Citrus × sinensis) in orchards also generates off-season revenue and extend the fruit processing period. This study aimed to evaluate several horticultural traits of 19 late-season sweet orange selections under citrus canker and huanglongbing (HLB) endemic condition in northwestern Paraná state, Brazil, in a long-term field experiment. Tree size, yield, fruit quality for fresh fruit and industrial markets, estimates of tree density and yield, and citrus canker and huanglongbing (HLB) incidences were assessed. The experimental design was a randomized block with three replicates and five trees per unit. The orchard was drip-irrigated and arranged at tree spacing of 6.5 m × 4.5 m. All scions were graft-compatible with Rangpur lime (C. × limonia). Valencia selections had the tallest trees and largest canopies, particularly Olinda, Frost and #121 with heights and volumes greater than 4.20 m and 43 m3, respectively. Natal África do Sul and Whit's Late Valencia trees were the most productive with cumulative yields above 640 kg per tree. Most of the selections produced fruits of excellent physicochemical quality attending the fresh fruit and industrial market requirements. All selections showed similar horticultural characteristics for the fresh market, while Natal África do Sul and Charmute de Brotas were more suitable for juice processing. Frost Valencia and Valencia Late Fla. had the highest incidence of citrus canker on fruits (>20%), whereas IPR Folha Murcha, Charmute de Brotas and some Valencia selections (Chafeei Late, Campbell 479, Campbell 294, Olinda, Mutação and Whit's Late) exihibed low incidence (3.0-17.7%). At 9 years, Valencia Mutação trees had high HLB incidence (93%). In contrast, Natal IAC and Folha Murcha IAC showed the lowest HLB incidence (13%). Our results revealed that Natal IAC, Folha Murcha IAC, IPR Folha Murcha, Natal Murcha, Campbell 479 Valencia and Valencia Late Fla. had the best horticultural performance in addition to low HLB incidence. Together, these late-season sweet oranges are the most advantageous selections for citrus orchard diversification under citrus canker and HLB endemic conditions in humid subtropical regions.

4.
Front Plant Sci ; 12: 777871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987531

RESUMO

Rootstocks modulate several characteristics of citrus trees, including vegetative growth, fruit yield and quality, and resistance or tolerance to pests, diseases, soil drought, and salinity, among other factors. There is a shortage of scion and rootstock cultivars among the combinations planted in Brazil. "Ponkan" mandarin and "Murcott" tangor grafted on "Rangpur" lime comprise the majority of the commercial mandarin orchards in Brazil. This low genetic diversity of citrus orchards can favor pest and disease outbreaks. This study aimed to evaluate the agronomic performance, Huanglongbing (HLB) tolerance, and fruit quality of "Emperor" mandarin on five different rootstocks for nine cropping seasons under the subtropical soil-climate conditions of the North region of the state of Paraná, Brazil. The experimental design was a randomized block, with six replications, two trees per block, and five rootstocks, including "Rangpur" lime, "Cleopatra," and "Sunki" mandarins, "Swingle" citrumelo, and "Fepagro C-13" citrange. The evaluations included tree growth, yield performance, fruit quality, and HLB disease incidence. "Emperor" mandarin trees grafted on "Rangpur" lime and "Swingle" citrumelo had early fruiting and high yield efficiency. "Rangpur" lime also induced the lowest tree growth, but low fruit quality. Trees on "Swingle" citrumelo and "Fepagro C-13" citrange showed low scion and rootstock affinity and produced fruits with high total soluble solids (TSS), with a lower number of seeds for those from trees on "Fepagro C-13" citrange. "Cleopatra" and "Sunki" mandarins induced higher juice content, while fruits from trees on "Cleopatra" also had higher TSS/titratable acidity (TA) ratio. "Emperor" mandarin trees were susceptible to HLB regardless of the rootstocks. Overall, "Cleopatra" and "Sunki" mandarins, "Swingle" citrumelo, and "Fepagro C-13" are more suitable rootstocks for "Emperor" mandarin under Brazilian subtropical conditions than "Rangpur" lime.

5.
Food Res Int ; 130: 108955, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32156395

RESUMO

Grapes are considered to be a major source of phenolic compounds as compared with other fruits. To improve the quality of table grapes, some techniques like thinning can be used. In addition, grape cultivars with distinct characteristics are directly linked to its phenolic profile. This study aimed to identify and quantify the phenolic compound profile and yield of the hybrid 'BRS Vitoria' seedless table grape under different bunch densities, using a combination of solid-phase extraction (SPE) methodologies and analytical high-performance liquid chromatography-diode array detector with tandem mass spectrometry (HPLC-DAD-ESI-MS/MS). A trial was carried out in 2016, in a commercial vineyard at Marialva, state of Parana (South Brazil). Three weeks after anthesis, the following bunch densities were evaluated: 4.0, 4.5, 5.0, 5.5, and 6 bunches per m2 (corresponding to an estimation of 16, 18, 20, 22, and 24 tons ha-1). The randomized block design was used as a statistical model with each treatment was replicated four times, with one vine per plot. Different characteristics were evaluated at harvest, e.g., soluble solids content (SS), total acidity (TA), maturation index (MI = SS/TA), bunch and berry masses, yield, as well hydroxycinnamic acid derivative (HCAD), anthocyanin, flavonol, and flavan-3-ol contents by HPLC-DAD-ESI-MS/MS analysis. The evaluated bunch densities did not interfere with the physicochemical characteristics of the berries, such as SS and MI. Under the density of 6.0 bunches per m2, the highest yield of 25 tons ha-1 was reached. Under all bunch densities, the phenolic profile presented the same compounds, but at different concentrations. Under a density of 5.0 bunches per m2, the compounds belonging to the anthocyanin and flavonol families were present in high concentrations. In contrast, at the densities of 4.0 and 4.5 bunches per m2, there was a reduction in the flavan-3-ol content. With respect to stilbenes, only the trans-piceid and its cis- isomer were detected. However, their concentrations had no significant influence on the evaluated bunch densities.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Fenóis/química , Espectrometria de Massas em Tandem/métodos , Vitis/crescimento & desenvolvimento , Ácidos Cumáricos/química , Produtos Agrícolas , Flavonóis/química , Proantocianidinas/química , Estilbenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA