RESUMO
A biomineralization processes is disclosed for engineering nanomaterials that support bone repair. The material was fabricated through a hot press process using electrospun poly(lactic acid) (PLA) matrix covered with hybrid composites of carbon nanotubes/graphene nanoribbons (GNR) and nanohydroxyapatite (nHA). Various scaffolds were devised [nHA/PLA, PLA/GNR, and PLA/nHA/GNR (1 and 3%)] and their structure and morphology characterized through Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), and Atomic force microscope (AFM). Moreover, thorough biocompatibility and toxicity studies were performed. Here, in vivo studies on toxicity and cytotoxicity were conducted in aqueous dispersions of the biomaterials at concentrations of 30, 60, and 120 µg/mL using the Allium cepa test. Further toxicity studies were performed through hemolysis toxicity tests and genotoxicity tests evaluating the damage index and damage frequencies of DNAs through comet assays with samples of the animals' peripheral blood, marrow, and liver. Additionally, the regenerative activity of the scaffolds was analyzed by measuring the cortical tibiae of rats oophorectomized implanted with the biomaterials. Biochemical analyzes [glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), urea, calcium, phosphorus, and alkaline phosphatase (ALP)] were also performed on blood samples. The results suggested a toxicity and cytotoxicity level for the GNR biomaterials at a concentration of 60 and 120 µg/mL, but non-toxicity and cytotoxicity for the 30 µg/mL concentration. The scaffolds obtained at a concentration of 0.3 mg/cm2 were not toxic in the hemolysis test and demonstrated no cytotoxicity, genotoxicity, and mutagenicity in the blood, marrow, and liver analyzes of the animals, corroborating data from the biochemical markers of GPT, GOT, and urea. Tissue regeneration was performed in all groups and was more pronounced in the group containing the combination of nHA/GNR (3%), which is consistent with the data obtained for the calcium, serum phosphorus, and ALP concentrations. Consequently, the study indicates that the engineered nanobiomaterial is a promising candidate for bone tissue repair and regenerative applications. STATEMENT OF SIGNIFICANCE: The scientific contribution of this study is the engineering of a synthetic hybrid biomaterial, in nanoscale by a pressing and heating process. A biodegradable polymeric matrix was covered on both sides with a carbonated hybrid bioceramic/graphene nanoribbons (GNR), which has hydrophilic characteristics, with chemical elements stoichiometrically similar to bone mineral composition. The nanomaterial displayed promising bone regeneration ability, which is the first example to be used in an osteoporotic animal model. Moreover, detailed biocompatibility and toxicity studies were performed on the nanomaterials and their compositions, which is of great interest for the scientific community.
Assuntos
Durapatita , Nanotubos de Carbono , Animais , Biomineralização , Regeneração Óssea , Ratos , Engenharia Tecidual , Alicerces TeciduaisRESUMO
There are increasing concerns regarding the risks arising from the contamination of manipulators of antineoplastic drugs promoted by occupational exposure or even in the dosage of drugs. The present work proposes the use of an electrochemical sensor based on a biopolymer extracted from the babassu coconut (Orbignya phalerata) for the determination of an antineoplastic 5-fluorouracil (5-FU) drug as an alternative for the monitoring of these drugs. In order to reduce the cost of this sensor, a flexible gold electrode (FEAu) is proposed. The surface modification of FEAu was performed with the deposition of a casting film of the biopolymer extracted from the babassu mesocarp (BM) and modified with phthalic anhydride (BMPA). The electrochemical activity of the modified electrode was characterized by cyclic voltammetry (CV), and its morphology was observed by atomic force microscopy (AFM). The FEAu/BMPA showed a high sensitivity (8.8 µA/µmol/L) and low limit of detection (0.34 µmol/L) for the 5-FU drug in an acid medium. Electrochemical sensors developed from the babassu mesocarp may be a viable alternative for the monitoring of the 5-FU antineoplastic in pharmaceutical formulations, because in addition to being sensitive to this drug, they are constructed of a natural polymer, renewable, and abundant in nature. Graphical abstract á .