Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virus Evol ; 7(2): veab069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532067

RESUMO

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. Importantly, we detected the community transmission of different P.1 lineages bearing NTD indels ∆69-70 (which can impact several SARS-CoV-2 diagnostic protocols), ∆144 and ins214ANRN, and a new VOI N.10 derived from the B.1.1.33 lineage carrying three NTD deletions (∆141-144, ∆211, and ∆256-258). These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil generates new viral lineages that might be more resistant to antibody neutralization than parental variants of concern.

3.
Viruses ; 13(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919314

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Brasil/epidemiologia , Genoma Viral , Humanos , Epidemiologia Molecular , Ligação Proteica , SARS-CoV-2/isolamento & purificação
4.
PLoS One ; 16(4): e0250853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909706

RESUMO

BACKGROUND: Infection by SARS-CoV-2 in domestic animals has been related to close contact with humans diagnosed with COVID-19. Objectives: To assess the exposure, infection, and persistence by SARS-CoV-2 of dogs and cats living in the same households of humans that tested positive for SARS-CoV-2, and to investigate clinical and laboratory alterations associated with animal infection. METHODS: Animals living with COVID-19 patients were longitudinally followed and had nasopharyngeal/oropharyngeal and rectal swabs collected and tested for SARS-CoV-2. Additionally, blood samples were collected for laboratory analysis, and plaque reduction neutralization test (PRNT90) to investigate specific SARS-CoV-2 antibodies. RESULTS: Between May and October 2020, 39 pets (29 dogs and 10 cats) of 21 patients were investigated. Nine dogs (31%) and four cats (40%) from 10 (47.6%) households were infected with or seropositive for SARS-CoV-2. Animals tested positive from 11 to 51 days after the human index COVID-19 case onset of symptoms. Three dogs tested positive twice within 14, 30, and 31 days apart. SARS-CoV-2 neutralizing antibodies were detected in one dog (3.4%) and two cats (20%). In this study, six out of thirteen animals either infected with or seropositive for SARS-CoV-2 have developed mild but reversible signs of the disease. Using logistic regression analysis, neutering, and sharing bed with the ill owner were associated with pet infection. CONCLUSIONS: The presence and persistence of SARS-CoV-2 infection have been identified in dogs and cats from households with human COVID-19 cases in Rio de Janeiro, Brazil. People with COVID-19 should avoid close contact with their pets during the time of their illness.


Assuntos
COVID-19/epidemiologia , COVID-19/veterinária , Animais de Estimação/virologia , Animais , Animais Domésticos/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Brasil/epidemiologia , Doenças do Gato , Gatos , Doenças do Cão , Cães , Estudos Longitudinais , Prevalência , SARS-CoV-2/patogenicidade
5.
Virus Evol ; 7(2): veab091, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35039782

RESUMO

One of the most remarkable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) features is the significant number of mutations they acquired. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we describe a new SARS-CoV-2 P.1 sub-lineage circulating in Brazil, denoted here as Gamma-like-II, that as well as the previously described lineage Gamma-like-I shares several lineage-defining mutations with the VOC Gamma. Reconstructions of ancestor sequences support that most lineage-defining mutations of the Spike (S) protein, including those at the receptor-binding domain (RBD), accumulated at the first P.1 ancestor. In contrast, mutations outside the S protein were mostly fixed at subsequent steps. Our evolutionary analyses estimate that P.1-ancestral strains carrying RBD mutations of concern probably circulated cryptically in the Amazonas for several months before the emergence of the VOC Gamma. Unlike the VOC Gamma, the other P.1 sub-lineages displayed a much more restricted dissemination and accounted for a low fraction (<2 per cent) of SARS-CoV-2 infections in Brazil in 2021. The stepwise diversification of lineage P.1 through multiple inter-host transmissions is consistent with the hypothesis that partial immunity acquired from natural SARS-CoV-2 infections in heavily affected regions might have been a major driving force behind the natural selection of some VOCs. The lag time between the emergence of the P.1 ancestor and the expansion of the VOC Gamma and the divergent epidemic trajectories of P.1 sub-lineages support a complex interplay between the emergence of mutations of concern and viral spread in Brazil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA