Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(3): 132, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436750

RESUMO

Due to their vectorial capacity, mosquitoes (Diptera: Culicidae) receive special attention from health authorities and entomologists. These cosmopolitan insects are responsible for the transmission of many viral diseases, such as dengue and yellow fever, causing huge impacts on human health and justifying the intensification of research focused on mosquito-borne diseases. In this context, the study of the virome of mosquitoes can contribute to anticipate the emergence and/or the reemergence of infectious diseases. The assessment of mosquito viromes also contributes to the surveillance of a wide variety of viruses found in these insects, allowing the early detection of pathogens with public health importance. However, the study of mosquito viromes can be challenging due to the number and complexities of steps involved in this type of research. Therefore, this article aims to describe, in a straightforward and simplified way, the steps necessary for obtention and assessment of mosquito viromes. In brief, this article explores: the capture and preservation of specimens; sampling strategies; treatment of samples before DNA/RNA extraction; extraction methodologies; enrichment and purification processes; sequencing choices; and bioinformatics analysis.


Assuntos
Culicidae , Doenças Transmitidas por Mosquitos , Humanos , Animais , Viroma , Biologia Computacional , Vetores Genéticos
2.
Transbound Emerg Dis ; 69(6): 3449-3456, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070102

RESUMO

Rabies is an encephalitis caused by rabies virus, whose transmission occurs upon contact with infected animals' saliva. The diagnosis is usually performed post-mortem through a direct fluorescent antibody test (DFAT). If the DFAT results are negative, they must be confirmed with an isolation test, usually the mouse inoculation test (MIT), which implies the suffering and death of the animals, high costs and most importantly, up to 28 days to confirm a negative result. Another issue related to rabies diagnosis is the sample collection and storage, which is critical for the rabies virus' RNA genome. Thus, this study aimed to evaluate (i) reverse transcriptase polymerase chain reaction (RT-PCR) and Rabies Tissue Culture Infection Tests (RTCIT) in comparison to DFAT and MIT and (ii) FTA® cards as an alternative sample collection and preservation method. Eighty animal samples were evaluated through DFAT, RTCIT and RT-PCR; MIT was performed only in DFAT-negative samples. FTA® cards were evaluated with a subset of 64 samples, with sufficient material for imprinting. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV), agreement and Cohen's kappa were calculated for each test combination. RTCIT had higher sensitivity (92.5%) and RT-PCR had higher specificity (92.3%) compared to DFAT. The combination of tests enhanced sensitivity, NPV and Cohen's kappa (considering positive results by RTCIT or RT-PCR), and specificity and PPV (when both tests were concordant). The PCR based on FTA® cards as sample source was specific (84.6%-96.2%) but presented lower sensitivity (29.7%-73.0%), although it could detect as positive four DFAT-negative samples. RTCIT and RT-PCR may be used as confirmatory tests in DFAT-negative samples. Moreover, FTA® cards may be helpful for sample collection in field situations where a long time is needed until the sample undergoes laboratory testing.


Assuntos
Vírus da Raiva , Raiva , Doenças dos Roedores , Animais , Camundongos , Raiva/diagnóstico , Raiva/veterinária , Reação em Cadeia da Polimerase/veterinária , Manejo de Espécimes/veterinária , RNA Viral/análise , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
3.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33303545

RESUMO

Respiratory syncytial virus (RSV) is the major cause of acute bronchiolitis in infants under 2 years old. Necroptosis has been implicated in the outcomes of respiratory virus infections. We report that RSV infection triggers necroptosis in primary mouse macrophages and human monocytes in a RIPK1-, RIPK3- and MLKL-dependent manner. Moreover, necroptosis pathways are harmful to RSV clearance from alveolar macrophages. Additionally, Ripk3-/- mice were protected from RSV-induced weight loss and presented with reduced viral loads in the lungs.Alveolar macrophage depletion also protected mice from weight loss and decreased lung RSV virus load. Importantly, alveolar macrophage depletion abolished the upregulation of Ripk3 and Mlkl gene expression induced by RSV infection in the lung tissue.Autocrine tumor necrosis factor (TNF)-mediated RSV-triggered macrophage necroptosis and necroptosis pathways were also involved in TNF secretion even when macrophages were committed to cell death, which can worsen lung injury during RSV infection. In line, Tnfr1-/- mice had a marked decrease in Ripk3 and Mlkl gene expression and a sharp reduction in the numbers of necrotic alveolar macrophages in the lungs. Finally, we provide evidence that elevated nasal levels of TNF are associated with disease severity in infants with RSV bronchiolitis.We propose that targeting TNF and/or the necroptotic machinery may be valuable therapeutic approaches to reduce the respiratory morbidity caused by RSV infection in young children.


Assuntos
Bronquiolite , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Macrófagos Alveolares , Camundongos , Necroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA