Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Intensive Care ; 14(1): 139, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231898

RESUMO

BACKGROUND: The coronavirus-related disease (COVID-19) is mainly characterized by a respiratory involvement. The renin-angiotensin system (RAS) has a relevant role in the pathogenesis of COVID-19, as the virus enters host's cells via the angiotensin-converting enzyme 2 (ACE2). METHODS: This investigator-initiated, seamless phase 1-2 randomized clinical trial was conceived to test the safety and efficacy of continuous short-term (up to 7 days) intravenous administration of Angiotensin-(1-7) in COVID-19 patients admitted to two intensive care units (ICU). In addition to standard of care, intravenous administration of Angiotensin-(1-7) was started at 5 mcg/Kg day and increased to 10 mcg/Kg day after 24 h (Phase 1; open label trial) or given at 10 mcg/Kg day and continued for a maximum of 7 days or until ICU discharge (Phase 2; double-blind randomized controlled trial). The rate of serious adverse events (SAEs) served as the primary outcome of the study for Phase 1, and the number of oxygen free days (OFDs) by day 28 for Phase 2. RESULTS: Between August 2020 and July 2021, when the study was prematurely stopped due to low recruitment rate, 28 patients were included in Phase 1 and 79 patients in Phase 2. Of those, 78 were included in the intention to treat analysis, and the primary outcome was available for 77 patients. During Phase 1, one SAE (i.e., bradycardia) was considered possibly related to the infusion, justifying its discontinuation. In Phase 2, OFDs did not differ between groups (median 19 [0-21] vs. 14 [0-18] days; p = 0.15). When patients from both phases were analyzed in a pooled intention to treat approach (Phase 1-2 trial), OFDs were significantly higher in treated patients, when compared to controls (19 [0-21] vs. 14 [0-18] days; absolute difference -5 days, 95% CI [0-7] p = 0.04). CONCLUSIONS: The main findings of our study indicate that continuous intravenous infusion of Angiotensin-(1-7) at 10 mcg/Kg day in COVID-19 patients admitted to the ICU with severe pneumonia is safe. In Phase II intention to treat analysis, there was no significant difference in OFD between groups. Trial Registration ClinicalTrials.gov Identifier: NCT04633772-Registro Brasileiro de Ensaios Clínicos, UTN number: U1111-1255-7167.

2.
Proteomics ; 22(17): e2100255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35652611

RESUMO

Alamandine is a heptapeptide from the renin-angiotensin system (RAS) with similar structure/function to angiotensin-(1-7) [ang-(1-7)], but they act via different receptors. It remains elusive whether alamandine is an antiproliferative agent like ang-(1-7). The goal of this study was to evaluate the potential antiproliferative activity of alamandine and the underlying cellular signaling. We evaluated alamandine effect in the tumoral cell lines Mia PaCa-2 and A549, and in the nontumoral cell lines HaCaT, CHO and CHO transfected with the alamandine receptor MrgD (CHO-MrgD). Alamandine was able to reduce the proliferation of the tumoral cell lines in a MrgD-dependent fashion. We did not observe any effect in the nontumoral cell lines tested. We also performed proteomics and phosphoproteomics to study the alamandine signaling in Mia PaCa-2 and CHO-MrgD. Data suggest that alamandine induces a shift from anaerobic to aerobic metabolism in the tumoral cells, induces a negative regulation of PI3K/AKT/mTOR pathway and activates the transcriptional factor FoxO1; events that could explain, at least partially, the observed antiproliferative effect of alamandine. This study provides for the first time a comprehensive investigation of the alamandine signaling in tumoral (Mia PaCa-2) and nontumoral (CHO-MrgD) cells, highlighting the antiproliferative activity of alamandine/MrgD and its possible antitumoral effect.


Assuntos
Fosfatidilinositol 3-Quinases , Receptores Acoplados a Proteínas G , Humanos , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Pancreáticas
3.
Br J Pharmacol ; 179(12): 3061-3077, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34978069

RESUMO

BACKGROUND AND PURPOSE: Bradykinin (BK-(1-9)) is an endogenous nonapeptide involved in multiple physiological and pathological processes. Peptide fragments of bradykinin are believed to be biologically inactive. We have now tested the two major peptide fragments of bradykinin in human and animals. EXPERIMENTAL APPROACH: BK peptides were quantified by MS in male rats. NO release was quantified from human, mouse and rat cells loaded with DAF-FM. Rat aortic rings were used to measure vascular reactivity. Changes in BP and HR were measured in conscious male rats. To evaluate pro-inflammatory effects both vascular permeability and nociception were measured in adult mice. KEY RESULTS: BK-(1-7) and BK-(1-5) are produced in vivo from BK-(1-9). Both peptides induced NO production in all cell types tested. However, unlike BK-(1-9), NO production elicited by BK-(1-7) or BK-(1-5) was not inhibited by B1 or B2 receptor antagonists. BK-(1-7) and BK-(1-5) induced concentration-dependent vasorelaxation of aortic rings, without involvement of B1 or B2 receptors. Intravenous or intra-arterial administration of BK-(1-7) or BK-(1-5) induced similar hypotensive response in vivo. Nociceptive responses of BK-(1-7) and BK-(1-5) were reduced compared to BK-(1-9), and no increase in vascular permeability was observed for BK-(1-9) fragments. CONCLUSIONS AND IMPLICATIONS: BK-(1-7) and BK-(1-5) are endogenous peptides present in plasma. BK-related peptide fragments show biological activity, not mediated by B1 or B2 receptors. These BK fragments could constitute new, active components of the kallikrein-kinin system.


Assuntos
Bradicinina , Receptores da Bradicinina , Animais , Bradicinina/farmacologia , Masculino , Camundongos , Fragmentos de Peptídeos , Ratos , Receptor B1 da Bradicinina , Receptor B2 da Bradicinina , Receptores da Bradicinina/fisiologia
4.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34350288

RESUMO

This letter reports an unexpected increase of the ACE2 product angiotensin-(1-7) and a parallel decrease of its substrate angiotensin II, suggesting a dysregulation of the renin-angiotensin system towards angiotensin-(1-7) formation in #COVID19 patients https://bit.ly/3xFXuTU.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA