Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Braz J Microbiol ; 54(3): 1533-1545, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37610567

RESUMO

N-Acetyl-glucosaminidases (GlcNAcases) are exoenzymes found in a wide range of living organisms, which have gained great attention in the treatment of disorders related to diabetes, Alzheimer's, Tay-Sachs', and Sandhoff's diseases; the control of phytopathogens; and the synthesis of bioactive GlcNAc-containing products. Aiming at future industrial applications, in this study, GlcNAcase production by marine Aeromonas caviae CHZ306 was enhanced first in shake flasks in terms of medium composition and then in bench-scale stirred-tank bioreactor in terms of physicochemical conditions. Stoichiometric balance between the bioavailability of carbon and nitrogen in the formulated culture medium, as well as the use of additional carbon and nitrogen sources, played a central role in improving the bioprocess, considerably increasing the enzyme productivity. The optimal cultivation medium was composed of colloidal α-chitin, corn steep liquor, peptone A, and mineral salts, in a 5.2 C:N ratio. Optimization of pH, temperature, colloidal α-chitin concentration, and kLa conditions further increased GlcNAcase productivity. Under optimized conditions in bioreactor (i.e., 34 °C, pH 8 and kLa 55.2 h-1), GlcNAcase activity achieved 173.4 U.L-1 after 12 h of cultivation, and productivity no less than 14.45 U.L-1.h-1 corresponding to a 370-fold enhancement compared to basal conditions.


Assuntos
Aeromonas caviae , Aeromonas caviae/genética , Reatores Biológicos , Carbono , Quitina , Hexosaminidases , Nitrogênio
2.
Artigo em Inglês | MEDLINE | ID: mdl-30687702

RESUMO

L-Asparaginase (ASNase) is a vital component of the first line treatment of acute lymphoblastic leukemia (ALL), an aggressive type of blood cancer expected to afflict over 53,000 people worldwide by 2020. More recently, ASNase has also been shown to have potential for preventing metastasis from solid tumors. The ASNase treatment is, however, characterized by a plethora of potential side effects, ranging from immune reactions to severe toxicity. Consequently, in accordance with Quality-by-Design (QbD) principles, ingenious new products tailored to minimize adverse reactions while increasing patient survival have been devised. In the following pages, the reader is invited for a brief discussion on the most recent developments in this field. Firstly, the review presents an outline of the recent improvements on the manufacturing and formulation processes, which can severely influence important aspects of the product quality profile, such as contamination, aggregation and enzymatic activity. Following, the most recent advances in protein engineering applied to the development of biobetter ASNases (i.e., with reduced glutaminase activity, proteolysis resistant and less immunogenic) using techniques such as site-directed mutagenesis, molecular dynamics, PEGylation, PASylation and bioconjugation are discussed. Afterwards, the attention is shifted toward nanomedicine including technologies such as encapsulation and immobilization, which aim at improving ASNase pharmacokinetics. Besides discussing the results of the most innovative and representative academic research, the review provides an overview of the products already available on the market or in the latest stages of development. With this, the review is intended to provide a solid background for the current product development and underpin the discussions on the target quality profile of future ASNase-based pharmaceuticals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA