Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Microbiol Mol Biol Rev ; : e0006924, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239986

RESUMO

SUMMARYEnterococcus faecalis and Enterococcus faecium are human pathobionts that exhibit a dual lifestyle as commensal and pathogenic bacteria. The pathogenic lifestyle is associated with specific conditions involving host susceptibility and intestinal overgrowth or the use of a medical device. Although the virulence of E. faecium appears to benefit from its antimicrobial resistance, E. faecalis is recognized for its higher pathogenic potential. E. faecalis has long been considered a predominantly extracellular pathogen; it adheres to and is taken up by a wide range of mammalian cells, albeit with less efficiency than classical intracellular enteropathogens. Carbohydrate structures, rather than proteinaceous moieties, are likely to be primarily involved in the adhesion of E. faecalis to epithelial cells. Consistently, few adhesins have been implicated in the adhesion of E. faecalis to epithelial cells. On the host side, very little is known about cognate receptors, except for the role of glycosaminoglycans during macrophage infection. Several lines of evidence indicate that E. faecalis internalization may involve a zipper-like mechanism as well as a macropinocytosis pathway. Conversely, E. faecalis can use several strategies to prevent engulfment in phagocytes. However, the bacterial and host mechanisms underlying cell infection by E. faecalis are still in their infancy. The most recent striking finding is the existence of an intracellular lifestyle where E. faecalis can replicate within a variety of host cells. In this review, we summarize and discuss the current knowledge of E. faecalis-host cell interactions and argue on the need for further mechanistic studies to prevent or reduce infections.

2.
ACS Infect Dis ; 10(5): 1725-1738, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38602352

RESUMO

Host-acting compounds are emerging as potential alternatives to combating antibiotic resistance. Here, we show that bosutinib, an FDA-approved chemotherapeutic for treating chronic myelogenous leukemia, does not possess any antibiotic activity but enhances macrophage responses to bacterial infection. In vitro, bosutinib stimulates murine and human macrophages to kill bacteria more effectively. In a murine wound infection with vancomycin-resistant Enterococcus faecalis, a single intraperitoneal bosutinib injection or multiple topical applications on the wound reduce the bacterial load by approximately 10-fold, which is abolished by macrophage depletion. Mechanistically, bosutinib stimulates macrophage phagocytosis of bacteria by upregulating surface expression of bacterial uptake markers Dectin-1 and CD14 and promoting actin remodeling. Bosutinib also stimulates bacterial killing by elevating the intracellular levels of reactive oxygen species. Moreover, bosutinib drives NF-κB activation, which protects infected macrophages from dying. Other Src kinase inhibitors such as DMAT and tirbanibulin also upregulate expression of bacterial uptake markers in macrophages and enhance intracellular bacterial killing. Finally, cotreatment with bosutinib and mitoxantrone, another chemotherapeutic in clinical use, results in an additive effect on bacterial clearance in vitro and in vivo. These results show that bosutinib stimulates macrophage clearance of bacterial infections through multiple mechanisms and could be used to boost the host innate immunity to combat drug-resistant bacterial infections.


Assuntos
Compostos de Anilina , Antibacterianos , Sobrevivência Celular , Macrófagos , Fagocitose , Animais , Humanos , Camundongos , Compostos de Anilina/farmacologia , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Nitrilas/farmacologia , Fagocitose/efeitos dos fármacos , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Sci Adv ; 9(8): eadd9280, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812322

RESUMO

Antibiotic resistance critically limits treatment options for infection caused by opportunistic pathogens such as enterococci. Here, we investigate the antibiotic and immunological activity of the anticancer agent mitoxantrone (MTX) in vitro and in vivo against vancomycin-resistant Enterococcus faecalis (VRE). We show that, in vitro, MTX is a potent antibiotic against Gram-positive bacteria through induction of reactive oxygen species and DNA damage. MTX also synergizes with vancomycin against VRE, rendering the resistant strains more permeable to MTX. In a murine wound infection model, single-dose MTX treatment effectively reduces VRE numbers, with further reduction when combined with vancomycin. Multiple MTX treatments accelerate wound closure. MTX also promotes macrophage recruitment and proinflammatory cytokine induction at the wound site and augments intracellular bacterial killing in macrophages by up-regulating the expression of lysosomal enzymes. These results show that MTX represents a promising bacterium- and host-targeted therapeutic for overcoming vancomycin resistance.


Assuntos
Enterococcus faecalis , Enterococos Resistentes à Vancomicina , Animais , Camundongos , Enterococcus faecalis/genética , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Mitoxantrona/farmacologia , Antibacterianos/farmacologia , Enterococos Resistentes à Vancomicina/genética
4.
PLoS Pathog ; 18(4): e1010434, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35390107

RESUMO

Enterococcus faecalis is a frequent opportunistic pathogen of wounds, whose infections are associated with biofilm formation, persistence, and recalcitrance toward treatment. We have previously shown that E. faecalis wound infection persists for at least 7 days. Here we report that viable E. faecalis are present within both immune and non-immune cells at the wound site up to 5 days after infection, raising the prospect that intracellular persistence contributes to chronic E. faecalis infection. Using in vitro keratinocyte and macrophage infection models, we show that E. faecalis becomes internalized and a subpopulation of bacteria can survive and replicate intracellularly. E. faecalis are internalized into keratinocytes primarily via macropinocytosis into single membrane-bound compartments and can persist in late endosomes up to 24 h after infection in the absence of colocalization with the lysosomal protease Cathepsin D or apparent fusion with the lysosome, suggesting that E. faecalis blocks endosomal maturation. Indeed, intracellular E. faecalis infection results in heterotypic intracellular trafficking with partial or absent labelling of E. faecalis-containing compartments with Rab5 and Rab7, small GTPases required for the endosome-lysosome trafficking. In addition, E. faecalis infection results in marked reduction of Rab5 and Rab7 protein levels which may also contribute to attenuated Rab incorporation into E. faecalis-containing compartments. Finally, we demonstrate that intracellular E. faecalis derived from infected keratinocytes are significantly more efficient in reinfecting new keratinocytes. Together, these data suggest that intracellular proliferation of E. faecalis may contribute to its persistence in the face of a robust immune response, providing a primed reservoir of bacteria for subsequent reinfection.


Assuntos
Enterococcus faecalis , Proteínas rab de Ligação ao GTP , Animais , Endossomos/metabolismo , Enterococcus faecalis/metabolismo , Lisossomos/metabolismo , Mamíferos , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
5.
Curr Opin Microbiol ; 63: 117-125, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333239

RESUMO

Biofilm formation is a multifactorial process and often a multi-species endeavour that involves complex signalling networks, chemical gradients, bacterial adhesion, and production or acquisition of matrix components. Antibiotics remain the main choice when treating bacterial biofilm-associated infections despite their intrinsic tolerance to antimicrobials, and propensity for acquisition and rapid dissemination of antimicrobial resistance within the biofilm. Eliminating hard to treat biofilm-associated infections that are antibiotic resistant will demand a holistic and multi-faceted approach, targeting multiple stages of biofilm formation, many of which are already in development. This mini review will highlight the current approaches that are employed to treat bacterial biofilm infections and discuss new approaches in development that have promise to reach clinical practice.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Biofilmes , Humanos , Estudos Prospectivos
7.
Front Microbiol ; 10: 2847, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921030

RESUMO

Meningococcal lipoprotein, Factor H binding protein (FHbp), is the sole antigen of the Trumenba vaccine (Pfizer) and one of four antigens of the Bexsero vaccine (GSK) targeting Neisseria meningitidis serogroup B isolates. Lipidation of FHbp is assumed to occur for all isolates. We show in the majority of a collection of United Kingdom isolates (1742/1895) non-synonymous single nucleotide polymorphisms (SNPs) in the signal peptide (SP) of FHbp. A single SNP, common to all, alters a polar amino acid that abolishes processing: lipidation and SP cleavage. Whilst some of the FHbp precursor is retained in the cytoplasm due to reduced binding to SecA, remarkably some is translocated and further surface-localized by Slam. Thus we show Slam is not lipoprotein-specific. In a panel of isolates tested, the overall reduced surface localization of the precursor FHbp, compared to isolates with an intact SP, corresponded with decreased susceptibility to antibody-mediated killing. Our findings shed new light on the canonical pathway for lipoprotein processing and translocation of important relevance for lipoprotein-based vaccines in development and in particular for Trumenba.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA