Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Omics ; 19(10): 743-755, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37581345

RESUMO

Microbial biostimulants have emerged as a sustainable alternative to increase the productivity and quality of important crops. Despite this, the effects of the treatment on plant metabolism are poorly understood. Thus, this study investigated the metabolic response of common bean (Phaseolus vulgaris) related to the treatment with a biostimulant obtained from the extract of Corynebacterium glutamicum that showed positive effects on the development, growth, and yield of crops previously. By untargeted metabolomic analysis using UHPLC-MS/MS, plants and seeds were subjected to treatment with the biostimulant. Under ideal growth conditions, the plants treated exhibited higher concentration levels of glutamic acid, nicotiflorin and glycosylated lipids derived from linolenic acid. The foliar application of the biostimulant under water stress conditions increased the chlorophyll content by 17% and induced the accumulation of flavonols, mainly quercetin derivatives. Also, germination seed assays exhibited longer radicle lengths for seeds treated compared to the untreated control even in the absence of light (13-18% increase, p-value <0.05). Metabolomic analysis of the seeds indicated changes in concentration levels of amino acids (tryptophan, phenylalanine, tyrosine, glutamine, and arginine) and their derivatives. The results point out the enhancement of abiotic stress tolerance and the metabolic processes triggered in this crop associated with the treatment with the biostimulant, giving the first insights into stress tolerance mechanisms in P. vulgaris.


Assuntos
Corynebacterium glutamicum , Phaseolus , Phaseolus/química , Phaseolus/metabolismo , Phaseolus/microbiologia , Espectrometria de Massas em Tandem , Estresse Fisiológico , Clorofila/metabolismo
2.
Biotechnol Biofuels Bioprod ; 16(1): 5, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624471

RESUMO

BACKGROUND: Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds. RESULTS: Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2. CONCLUSIONS: The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.

3.
Appl Microbiol Biotechnol ; 106(7): 2503-2516, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35352150

RESUMO

The biocatalytic production of fuels and chemicals from plant biomass represents an attractive alternative to fossil fuel-based refineries. In this context, the mining and characterization of novel biocatalysts can promote disruptive innovation opportunities in the field of lignocellulose conversion and valorization. In the present work, we conducted the biochemical and structural characterization of two novel hydroxycinnamic acid catabolic enzymes, isolated from a lignin-degrading microbial consortium, a feruloyl-CoA synthetase, and a feruloyl-CoA hydratase-lyase, named LM-FCS2 and LM-FCHL2, respectively. Besides establishing the homology model structures for novel FCS and FCHL members with unique characteristics, the enzymes presented interesting biochemical features: LM-FCS2 showed stability in alkaline pHs and was able to convert a wide array of p-hydroxycinnamic acids to their respective CoA-thioesters, including sinapic acid; LM-FCHL2 efficiently converted feruloyl-CoA and p-coumaroyl-CoA into vanillin and 4-hydroxybenzaldehyde, respectively, and could produce vanillin directly from ferulic acid. The coupled reaction of LM-FCS2 and LM-FCHL2 produced vanillin, not only from commercial ferulic acid but also from a crude lignocellulosic hydrolysate. Collectively, this work illuminates the structure and function of two critical enzymes involved in converting ferulic acid into high-value molecules, thus providing valuable concepts applied to the development of plant biomass biorefineries. KEY POINTS: • Comprehensive characterization of feruloyl-CoA synthetase from metagenomic origin. • Novel low-resolution structures of hydroxycinnamate catabolic enzymes. • Production of vanillin via enzymatic reaction using lignocellulosic hydrolysates.


Assuntos
Lignina , Metagenoma , Escherichia coli/genética , Hiperlipidemia Familiar Combinada , Lignina/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA