Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38922471

RESUMO

Advanced oxidative processes, such as Photo-Fenton, transform organic contaminants due to the attack by radicals. In this context, the lethal and sub-lethal effects of the Cruiser® 350FS (CRZ) with the active ingredient thiamethoxam (TMX) were investigated using the planarian Girardia tigrina. Degradation of thiamethoxam by the Fenton process was also assessed by using theoretical studies and the efficiency of Solar-Fenton versus Fenton. The 48 h LC50 value of CRZ for planarians was 478.6 mg L-1. The regeneration of planarians was significantly affected for concentrations ≥ 17 mg·L-1 of TMX (24 h). The Solar-Fenton showed a high degradation percentage reaching ~70%. The theoretical model showed the atoms of the TMX molecule that will suffer attacks from the formed radicals. Current results open new perspectives concerning the treatment of TMX in the aquatic environment because the 70% degradation seems to be sufficient to reach concentrations that do not induce sub-lethal effects in planarians. Further studies should determine if the by-products generated might be toxic for planaria or other organisms.

2.
Ecotoxicol Environ Saf ; 245: 114092, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155333

RESUMO

Clothianidin (CLO) is an insecticide belonging to the second-generation class of neonicotinoids. In this study, we evaluated how CLO affects the survival and the complete life cycle of the tropical insect Chironomus xanthus, a non-target species, considering the Parental (P) and Filial (F1) generations. We found a 48 h-lethal concentration (LC50) of CLO of 3.78 µg/L. The lowest observed effect concentrations (LOECs) were: i) for body growth and head capsule width in P generation = 47.3 ng/L CLO; ii) for body growth and head capsule width in F1 generation larvae = 80 and 36.4 ng/L CLO, respectively; iii) for cumulative emergence it was 80 ng/L CLO in the P generation, while there was no significant difference in the F1 generation; iv) for total developmental time for males and females = 61.53 ng/L in P generation; v) in the F1 generation, the LOEC was determined to be 36.4 ng/L for males and 80 ng/L for females; vi) The number of total hatched eggs and total hatched eggs/female had LOECs of 36.4 ng/L CLO for both generations. Our study reveals that environmentally relevant concentrations of the CLO-based insecticide are highly toxic to C. xanthus. It also shows that the F1 generation, resulting from parents exposed to CLO was not clearly resistant to the insecticide. This fact might be explained by the different effects observed for males and females of F1 generation. Understanding the sub-types of acetylcholine receptors present on target and non-target insect species and toxicological effects of neonicotinoids seems to be desirable for the insecticide industry to deal with insect pests and the environmental protection of non-target organisms.


Assuntos
Chironomidae , Inseticidas , Acetilcolina/farmacologia , Animais , Feminino , Guanidinas , Insetos , Inseticidas/toxicidade , Larva , Masculino , Neonicotinoides/toxicidade , Receptores Colinérgicos , Tiazóis
3.
Environ Sci Pollut Res Int ; 27(27): 34223-34233, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32557035

RESUMO

Salinization in freshwaters is gradually increasing as a result of human activities and climatic changes. Higher salt content causes stress for freshwater organisms. Sodium chloride (NaCl) is among the most frequently occurring salts in freshwater ecosystems. The objective of the present study was to investigate the lethal and sublethal effects of NaCl on freshwater ecosystems, using as test organism the dipteran Chironomus xanthus and the planarian Girardia tigrina. Acute tests showed that C. xanthus was more sensitive (48-h LC50 (median lethal concentration) of 2.97 g NaCl L-1) than G. tigrina (48-h LC50 of 7.77 g NaCl L-1). C. xanthus larvae growth rate (larvae length and head capsule width) was significantly reduced under exposure to concentrations as low as 0.19 g L-1 NaCl and higher. A delay in the emergence time (EmT50) was also demonstrated for the same concentration. Sublethal NaCl effects in G. tigrina included feeding inhibition (LOEC (lowest observed effect concentration) of 0.4 g L-1), reduced locomotion (LOEC = 0.2 g L-1), and 24-48-h blastema regeneration (LOEC = 0.2 g L-1 and 0.1 g L-1, respectively). The results demonstrated the toxicity of NaCl to C. xanthus and G. tigrina including sublethal effects that can result in negative consequences for populations in natural freshwaters under salinization.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Ecossistema , Água Doce , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA