Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dent J (Basel) ; 11(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36661552

RESUMO

In this case report, we demonstrate how the correct positioning of implants, associated with optimal gingival conditioning, and the correct choice of biomaterial can yield very predictable and fantastic aesthetic results. OBJECTIVE: We aimed to use dental implants to rehabilitate the area of elements #11 and #21 in a satisfactory surgical and prosthetic manner, using guided surgery, connective tissue, nano-biomaterials, and a porcelain prosthesis. CASE REPORT: A 32-year-old male patient presented with bone loss of elements #11 and #21, which was proven radiographically and clinically. Thus, oral rehabilitation with the use of dental implants was required. It was decided to proceed via digital planning with the DSD program (Digital smile design) and with the software Exoplan, (Smart Dent-Germany) whenever it was possible to plan immediate provisional and accurate dental implant positioning through reverse diagnostics (Software Exoplan, Smart Dent-German). The dental elements were extracted atraumatically; then, a guide was established, the implants were positioned, the prosthetic components were placed, the conjunctive tissue was removed from the palate and redirected to the vestibular wall of the implants, the nano-graft (Blue Bone®) was conditioned in the gaps between the vestibular wall and the implants, and, finally, the cemented provision was installed. RESULTS: After a 5-month accompaniment, an excellent remodeling of the tissues had been achieved by the implants; consequently, the final prosthetic stage could begin, which also achieved a remarkable aesthetic result. CONCLUSIONS: This report demonstrates that the correct planning of dental implants, which is associated with appropriate soft tissue and bone manipulation, allows for the achievement of admirable clinical results.

2.
Polymers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883638

RESUMO

In this work, in vitro testing was used to study the properties of non-crosslinked type 1 bovine derived collagen membranes used in bone regeneration surgery. Collagen membranes were prepared, their surface roughness was quantified by interferometry, their morphology was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), their wettability was measured by the contact angle technique, their mechanical properties were investigated by tensile testing, their phase transformation temperatures were measured by Differential Scanning Calorimetry (DSC), and their biocompatibility was evaluated by immunological testing. The calorimetry tests showed that the membrane is formed only by type 1 collagen. The SEM observations showed that the morphology consists of layers of highly organized collagen fibers and patterns of striated fibrils typical of type 1 collagen. The small contact angle showed that the membrane is hydrophilic, with the possibility of rapid absorption of body fluids. The tensile tests showed that the membrane has enough elasticity, ductility, and mechanical strength for use in tissue regeneration. With the immunostaining technique, it was possible to confirm the membrane biocompatibility.

3.
Int J Nanomedicine ; 16: 3473-3485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040373

RESUMO

BACKGROUND: Synthetic biomaterials have played an increasingly prominent role in the substitution of naturally derived biomaterials in current surgery practice. In vitro and in vivo characterization studies of new synthetic biomaterials are essential to analyze their physicochemical properties and the underlying mechanisms associated with the modulation of the inflammatory process and bone healing. PURPOSE: This study compares the in vivo tissue behavior of a synthetic biomaterial nano-hydroxyapatite/beta-tricalcium phosphate (nano-HA/ß-TCP mixture) and deproteinized bovine bone mineral (DBBM) in a rat calvarial defect model. The innovation of this work is in the comparative analysis of the effect of new synthetic and commercially xenogenic biomaterials on the inflammatory response, bone matrix gain, and stimulation of osteoclastogenesis and osteoblastogenesis. METHODS: Both biomaterials were inserted in rat defects. The animals were divided into three groups, in which calvarial defects were filled with xenogenic biomaterials (group 1) and synthetic biomaterials (group 2), or left unfilled (group 3, controls). Sixty days after calvarial bone defects filled with biomaterials, periodic acid Schiff (PAS) and Masson's trichrome staining, immunohistochemistry tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and electron microscopy analyses were conducted. RESULTS: Histomorphometric analysis revealed powerful effects such as a higher amount of proteinaceous matrix and higher levels of TNF-α and MMP-9 in bone defects treated with alloplastic nano-HA/ß-TCP mixture than xenogenicxenogic biomaterial, as well as collagen-proteinaceous material in association with hydroxyapatite crystalloids. CONCLUSION: These data indicate that the synthetic nano-HA/ß-TCP mixture enhanced bone formation/remodeling in rat calvarial bone defects. The nano-HA/ß-TCP did not present risks of cross-infection/disease transmission. The synthetic nano-hydroxyapatite/beta-tricalcium phosphate mixture presented adequate properties for guided bone regeneration and guided tissue regeneration for dental surgical procedures.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Hidroxiapatitas/química , Hidroxiapatitas/farmacologia , Nanoestruturas/química , Crânio/efeitos dos fármacos , Crânio/fisiologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colágeno/metabolismo , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Crânio/metabolismo , Crânio/patologia
4.
Materials (Basel) ; 13(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076561

RESUMO

Nowadays, we can observe a worldwide trend towards the development of synthetic biomaterials. Several studies have been conducted to better understand the cellular mechanisms involved in the processes of inflammation and bone healing related to living tissues. The aim of this study was to evaluate tissue behaviors of two different types of biomaterials: synthetic nano-hydroxyapatite/beta-tricalcium phosphate composite and bone xenograft in sub-critical bone defects in rat calvaria. Twenty-four rats underwent experimental surgery in which two 3 mm defects in each cavity were tested. Rats were divided into two groups: Group 1 used xenogen hydroxyapatite (Bio Oss™); Group 2 used synthetic nano-hydroxyapatite/beta-tricalcium phosphate (Blue Bone™). Sixty days after surgery, calvaria bone defects were filled with biomaterial, animals were euthanized, and tissues were stained with Masson's trichrome and periodic acid-Schiff (PAS) techniques, immune-labeled with anti-TNF-α and anti-MMP-9, and electron microscopy analyses were also performed. Histomorphometric analysis indicated a greater presence of protein matrix in Group 2, in addition to higher levels of TNF-α and MMP-9. Ultrastructural analysis showed that biomaterial fibroblasts were associated with the tissue regeneration stage. Paired statistical data indicated that Blue Bone™ can improve bone formation/remodeling when compared to biomaterials of xenogenous origin.

5.
Sci Rep ; 9(1): 19602, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863078

RESUMO

The objective of this work was to characterize the properties of a synthetic biomaterial composite with nanoparticles size (Blue Bone). This biomaterial is a composite recommended for dental and orthopedic grafting surgery, for guided bone regeneration, including maxillary sinus lift, fresh alveolus filling, and treatment of furcation lesions. The nano biomaterials surface area is from 30% to 50% higher than those with micro dimensions. Another advantage is that the alloplastic biomaterial has homogeneous properties due to the complete manufacturing control. The analyzed biomaterial composite was characterized by XRD, cytochemistry, scanning electron microscopy, porosimetry and in vivo experiments (animals). The results showed that the analyzed biomaterial composite has 78.76% hydroxyapatite [Ca5(PO4)3(OH)] with monoclinic structure, 21.03% ß-tricalcium phosphate [ß -Ca3(PO4)2] with trigonal structure and 0.19% of CaO with cubic structure, nanoparticles with homogeneous shapes, and nanoporosity. The in vivo experiments showed that the composite has null cytotoxicity, and the site of insertion biomaterials has a high level of vascularization and bone formation. The conclusion is that the synthetic biomaterial with Blue Bone designation presents characteristics suitable for use in grafting surgery applications.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Fosfatos de Cálcio/química , Durapatita/química , Nanopartículas/química , Animais , Substitutos Ósseos , Osso e Ossos , Microscopia Eletrônica de Varredura , Ortopedia , Porosidade , Período Pós-Operatório , Ratos , Ratos Wistar , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA