Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Rep ; 14(1): 7835, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570516

RESUMO

Cardiovascular risk increases during the aging process in women with atherosclerosis and exercise training is a strategy for management of cardiac risks in at-risk populations. Therefore, the aims of this study were to evaluate: (1) the influence of the aging process on cardiac function, hemodynamics, cardiovascular autonomic modulation, and baroreflex sensitivity in females with atherosclerosis at the onset of reproductive senescence; and (2) the impact of exercise training on age-related dysfunctions in this model. Eighteen Apolipoprotein-E knockout female mice were divided equally into young (Y), middle-aged (MA), and trained middle-aged (MAT). Echocardiographic exams were performed to verify cardiac morphology and function. Cannulation for direct recording of blood pressure and heart rate, and analysis of cardiovascular autonomic modulation, baroreflex sensitivity were performed. The MA had lower cardiac diastolic function (E'/A' ratio), and higher aortic thickness, heart rate and mean arterial pressure, lower heart rate variability and baroreflex sensitivity compared with Y. There were no differences between Y and MAT in these parameters. Positive correlation coefficients were found between aortic wall thickness with hemodynamics data. The aging process causes a series of deleterious effects such as hemodynamic overload and dysautonomia in female with atherosclerosis. Exercise training was effective in mitigating aged-related dysfunctions.


Assuntos
Aterosclerose , Doenças do Sistema Nervoso Autônomo , Sistema Cardiovascular , Humanos , Pessoa de Meia-Idade , Feminino , Camundongos , Animais , Idoso , Coração , Hemodinâmica , Pressão Sanguínea/fisiologia , Frequência Cardíaca , Aterosclerose/terapia
2.
PLoS One ; 19(1): e0296687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198460

RESUMO

OBJECTIVE: In this study, we aimed to investigate the effects of the concurrent exercise training (CET) associated with the enalapril maleate on blood pressure variability (BPV) and renal profile in an experimental model of arterial hypertension (AH) and postmenopause. METHODS: Female ovariectomized spontaneously hypertensive rats (SHR) were distributed into 4 groups (n = 8/group): sedentary (SO), sedentary + enalapril (SOE), trained (TO) and trained + enalapril (TOE). Both enalapril (3mg/kg) and CET (3 days/week) were conducted during 8 weeks. Blood pressure (BP) was directly recorded for BPV analyses. Renal function, morphology, inflammation and oxidative stress were assessed. RESULTS: The SOE, TO e TOE groups presented decreased systolic BP compared with SO. Both trained groups (TO and TOE) presented lower BPV and increased baroreflex sensitivity (TO: 0.76 ± 0.20 and TOE: 1.02 ± 0.40 vs. SO: 0.40 ± 0.07 ms/mmHg) compared with SO group, with additional improvements in TOE group. Creatinine and IL-6 levels were reduced in SOE, TO and TOE compared with SO group, while IL-10 was increased only in TOE group (vs. SO). Enalapril combined with CET promote reduction in lipoperoxidation (TOE: 1.37 ± 0.26 vs. SO: 2.08 ± 0.48 and SOE: 1.84 ± 0.35 µmol/mg protein) and hydrogen peroxide (TOE: 1.89 ± 0.40 vs. SO: 3.70 ± 0.19 and SOE: 2.73 ± 0.70 µM), as well as increase in catalase activity (vs. sedentary groups). The tubulointerstitial injury was lower in interventions groups (SOE, TO and TOE vs. SO), with potentialized benefits in the trained groups. CONCLUSIONS: Enalapril combined with CET attenuated BPV and baroreflex dysfunctions, probably impacting on end-organ damage, as demonstrated by attenuation in the AH-induced renal inflammations, oxidative stress and morphofunctional impairments in postmenopausal rats.


Assuntos
Hipertensão , Nefrite , Insuficiência Renal , Feminino , Animais , Ratos , Pressão Sanguínea , Pós-Menopausa , Enalapril/farmacologia , Hipertensão/tratamento farmacológico , Ratos Endogâmicos SHR , Modelos Teóricos
3.
Int J Obes (Lond) ; 48(2): 284-287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985745

RESUMO

Fructose overconsumption is a worldwide trend, and it has been found to cause metabolic disorders in parents and their offspring. Additionally, metabolic syndrome has been closely associated with increased cardiovascular risk. In this study, we hypothesized that the chronic fructose consumption by parents could trigger autonomic dysfunction and cardiometabolic disorders in their offspring. Wistar rats undergo an intake of 10% of fructose in drinking water or regular water for 60 days before mating. Their offspring, control (C) and fructose (F) groups, were evaluated 30 days after weaning. Lower birth weight, increased levels of blood triglycerides and insulin resistance were observed in F compared to C group. The offspring of the fructose parents showed increased mean arterial pressure (C: 104 ± 1 vs. F: 111 ± 2 mmHg) and baroreflex sensitivity impairment, characterized by reduced bradycardic (C: -1.6 ± 0.06 vs. F: -1.3 ± 0.06 bpm/mmHg) and tachycardic responses (C: -4.0 ± 0.1 vs. F: -3.1 ± 0.2 bpm/mmHg). Finally, a higher baroreflex-induced tachycardia was associated with lower insulin tolerance (r = -0.55, P < 0.03) and higher systolic arterial pressure (r = 0.54, P < 0.02). In conclusion, our findings indicate that the excessive consumption of fructose by parents is associated with early autonomic, cardiovascular, and metabolic derangement in the offspring, favoring an increased cardiometabolic risk when they reach adulthood.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Ratos , Animais , Pressão Arterial , Barorreflexo , Frutose/efeitos adversos , Ratos Wistar , Glicemia/metabolismo , Pressão Sanguínea
4.
PLoS One ; 18(8): e0289715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549182

RESUMO

OBJECTIVE: This study aimed to evaluate whether exercise training could contribute to a better modulation of the neurohumoral mechanisms linked to the pathophysiology of arterial hypertension (AH) in postmenopausal hypertensive rats treated with hydrochlorothiazide (HCTZ). METHODS: Female spontaneously hypertensive rats (SHR) (150-200g, 90 days old) were distributed into 5 hypertensive groups (n = 7-8 rats/group): control (C), ovariectomized (O), ovariectomized treated with HCTZ (OH), ovariectomized submitted to exercise training (OT) and ovariectomized submitted to exercise training and treated with HCTZ (OTH). Ovarian hormone deprivation was performed through bilateral ovariectomy. HCTZ (30mg/kg/day) and concurrent exercise training (3d/wk) were conducted lasted 8 weeks. Arterial pressure (AP) was directly recorded. Cardiac effort was evaluated using the rate-pressure product (RPP = systolic AP x heart rate). Vasopressin V1 receptor antagonist, losartan and hexamethonium were sequentially injected to evaluate the vasopressor systems. Inflammation and oxidative stress were evaluated in cardiac tissue. RESULTS: In addition to the reduction in AP, trained groups improved RPP, AP variability, bradycardic (OT: -1.3 ± 0.4 and OTH: -1.6 ± 0.3 vs. O: -0.6 ± 0.3 bpm/mmHg) and tachycardic responses of baroreflex sensitivity (OT: -2.4 ± 0.8 and OTH: -2.4 ± 0.8 vs. O: -1.3 ± 0.5 bpm/mmHg), NADPH oxidase and IL-10/TNF-α ratio. Hexamethonium injection revealed reduced sympathetic contribution on basal AP in OTH group (OTH: -49.8 ± 12.4 vs. O: -74.6 ± 18.1 mmHg). Furthermore, cardiac sympathovagal balance (LF/HF ratio), IL-10 and antioxidant enzymes were enhanced in OTH group. AP variability and baroreflex sensitivity were correlated with systolic AP, RPP, LF/HF ratio and inflammatory and oxidative stress parameters. CONCLUSION: The combination of HCTZ plus concurrent exercise training induced additional positive adaptations in cardiovascular autonomic control, inflammation and redox balance in ovariectomized SHR. Therefore, combining exercise and medication may represent a promising strategy for managing classic and remaining cardiovascular risks in AH.


Assuntos
Hipertensão , Pós-Menopausa , Ratos , Feminino , Animais , Interleucina-10 , Hidroclorotiazida/farmacologia , Hexametônio , Ratos Wistar , Pressão Sanguínea/fisiologia , Ratos Endogâmicos SHR , Frequência Cardíaca/fisiologia , Estresse Oxidativo , Barorreflexo/fisiologia , Inflamação
5.
Exp Gerontol ; 145: 111181, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340684

RESUMO

Cardiovascular autonomic dysfunction is associated with end organ damage and increased risk of mortality. Menopause and metabolic syndrome increase the risk for cardiorenal complications. In this study, we investigated the effects of aerobic or resistance exercise training on autonomic control of circulation and renal oxidative stress in a model of menopause and metabolic syndrome. Female Wistar rats and spontaneously hypertensive rats (SHR) were divided into 5 groups (n = 8): control (C), hypertensive (H), and sedentary (FHO), aerobic trained (FHOTa) and resistance trained (FHOTr) oophorectomized hypertensive treated with fructose (100 mg/mL drink water for 19 weeks). The FHO group presented increased vascular sympathetic modulation (LF-SBP), impaired baroreflex sensitivity (BRS) associated with increased blood pressure (BP) when compared to the H group. Aerobic exercise training enhanced tachycardic responses, while resistance training improved bradycardic responses to BP changes, thus ameliorating BRS. Moreover, despite unchanged BP, both exercise training protocols were effective in preventing increase in LF-SBP, reduction in systemic nitric oxide bioavailability (NOx), and increase in oxidative stress in the renal tissue, by decreasing lipid and protein oxidation in renal tissue. Positive correlation between LF-SBP and renal lipoperoxidation (r = 0.63, p < 0.05), as well as a negative correlation between NOx and renal lipoperoxidation (r = -0.66, p < 0.05) were observed. In conclusion, both aerobic and resistance exercise training were effective in improving autonomic control of circulation and reducing renal oxidative stress, thus attenuating the deleterious effects induced by arterial hypertension and fructose overload in female rats after ovarian hormone deprivation.


Assuntos
Hipertensão , Condicionamento Físico Animal , Treinamento Resistido , Animais , Barorreflexo , Pressão Sanguínea , Feminino , Frequência Cardíaca , Humanos , Estresse Oxidativo , Ratos , Ratos Wistar
6.
Biomed Res Int ; 2020: 1605358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102574

RESUMO

In kidney disease (KD), several factors released into the bloodstream can induce a series of changes in the heart, leading to a wide variety of clinical situations called cardiorenal syndrome (CRS). Reactive oxygen species (ROS) play an important role in the signaling and progression of systemic inflammatory conditions, as observed in KD. The aim of the present study was to characterize the redox balance in renal ischemia/reperfusion-induced cardiac remodeling. C57BL/6 male mice were subjected to occlusion of the left renal pedicle, unilateral, for 60 min, followed by reperfusion for 8 and 15 days, respectively. The following redox balance components were evaluated: catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (FRAP), NADPH oxidase (NOX), nitric oxide synthase (NOS), hydrogen peroxide (H2O2), and the tissue bioavailability of nitric oxide (NO) such as S-nitrosothiol (RSNO) and nitrite (NO2 -). The results indicated a process of renoprotection in both kidneys, indicated by the reduction of cellular damage and some oxidant agents. We also observed an increase in the activity of antioxidant enzymes, such as SOD, and an increase in NO bioavailability. In the heart, we noticed an increase in the activity of NOX and NOS, together with increased cell damage on day 8, followed by a reduction in protein damage on day 15. The present study concludes that the kidneys and heart undergo distinct processes of damage and repair at the analyzed times, since the heart is a secondary target of ischemic kidney injury. These results are important for a better understanding of the cellular mechanisms involved in CRS.


Assuntos
Síndrome Cardiorrenal/metabolismo , Rim/metabolismo , Estresse Oxidativo/fisiologia , Traumatismo por Reperfusão/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxidantes/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
7.
Exp Gerontol ; 124: 110635, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195102

RESUMO

BACKGROUND: The association of aging and menopause is a potent risk factor for cardiometabolic disease. We studied the impact of aerobic exercise training (ET) initiated in the old stage of lifespan in hemodynamics, metabolic, autonomic and oxidative stress. METHODS: Aged (18 months old) female Wistar rats were divided into: ovariectomized and untrained (AG-OVX), and ovariectomized and trained (AG-OVXt, ET for 8 weeks). Intact aged (AG) and young female rats (3 months old; Y) were also studied. Blood pressure and metabolic parameters were measured. Baroreflex sensitivity (BRS) was studied by bradycardic (BR) and tachycardic (TR) responses to vasoactive drugs. Cardiac and renal lipid peroxidation (LPO), catalase (CAT), superoxide dismutase (SOD) and gluthatione peroxidase (GPx), and gluthatione redox balance (GSH/GSSG) were analyzed. RESULTS: AG-OVXt group increased aerobic performance in 35%, decreased adipose tissue and triglycerides in 36% and 27%, respectively, and improved insulin tolerance in 50% in comparison to AG-OVX. AG-OVX presented hypertensive levels of blood pressure (systolic: 155 ±â€¯5, diastolic: 111 ±â€¯3 mmHg). In contrast, AG-OVXt presented blood pressure values similar to Y rats (systolic: 129 ±â€¯3, diastolic: 112 ±â€¯3 mmHg). TR and BR were reduced by 70% and 46%, respectively, in AG-OVX vs. Y. Once more, AG-OVXt presented similar results to Y. ET decreased LPO in the heart and kidney. In the latter, renal CAT and SOD were corrected by ET, while cardiac redox balance was partially recovered. Improved BRS was correlated with improved oxidative stress markers. CONCLUSIONS: Even when initiated after aging and ovariectomy deleterious effects, ET is able to normalize BRS and highly improve cardiac and renal oxidative stress.


Assuntos
Envelhecimento , Barorreflexo , Estresse Oxidativo , Condicionamento Físico Animal , Treinamento Resistido , Animais , Pressão Sanguínea , Catalase/metabolismo , Feminino , Coração/fisiologia , Frequência Cardíaca , Hemodinâmica , Peroxidação de Lipídeos , Menopausa , Modelos Animais , Músculo Esquelético/enzimologia , Ovariectomia , Ratos , Ratos Wistar
8.
Front Physiol ; 9: 1471, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420811

RESUMO

The prevalence of hypertension sharply increases in menopausal women. Recent studies have demonstrated that aerobic or resistance training may help control hypertension. In this study, we report that combining aerobic and resistance training may provide an effective therapeutic approach for hypertension control, attenuating inflammation and oxidative stress in ovariectomized rats. Female Wistar and spontaneous hypertensive rats (SHR) were distributed into four groups: sedentary control (C), sedentary hypertensive (HR), sedentary hypertensive ovariectomized (HR-O), and combined trained hypertensive ovariectomized (T-HR-O). Combined exercise training was performed on a motor treadmill (aerobic training) and on a ladder adapted to rats (resistance training), in alternate days for 8 weeks. Direct arterial pressure was recorded and oxidative stress and inflammation were evaluated in cardiac and renal tissue. Ovariectomy increases increased mean arterial blood pressure, sympathetic modulation, and oxidative stress in SHR. Combining aerobic and resistance training reduced mean arterial blood pressure (12% vs. HR-O), heart rate (8% vs. HR-O), vascular sympathetic modulation (40% vs. HR-O), and improved baroreflex sensitivity. Combined training reduced cardiac inflammation (TNF and IL-6) and cardiac and renal lipoperoxidation (59% and 57%, respectively vs. HR-O). It also enhanced cardiac (71%) and renal (76%) total antioxidant capacity when compared to HR-O group. In conclusion, combining aerobic and resistance training improves mean arterial blood pressure, cardiovascular autonomic control, preventing cardiac and renal oxidative stress and inflammation in an experimental hypertension model with surgical menopause induced with ovariectomy.

9.
Sci Rep ; 8(1): 8578, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872081

RESUMO

This study analyzes whether autonomic dysfunction precedes cardiometabolic alterations in spontaneously hypertensive rats (SHR) with fructose overload. Animals were randomly distributed into three groups: control, hypertensive and hypertensive with fructose overload. Fructose overload (100 g/L) was initiated at 30 days old, and the animals (n = 6/group/time) were evaluated after 7, 15, 30 and 60 days of fructose consumption. Fructose consumption reduced baroreflex sensitivity by day 7, and still induced a progressive reduction in baroreflex sensitivity over the time. Fructose consumption also increased TNFα and IL-6 levels in the adipose tissue and IL-1ß levels in the spleen at days 15 and 30. Fructose consumption also reduced plasmatic nitrites (day 15 and 30) and superoxide dismutase activity (day 15 and 60), but increased hydrogen peroxide (day 30 and 60), lipid peroxidation and protein oxidation (day 60). Fructose consumption increased arterial pressure at day 30 (8%) and 60 (11%). Fructose consumption also induced a late insulin resistance at day 60, but did not affect glucose levels. In conclusion, the results show that baroreflex sensitivity impairment precedes inflammatory and oxidative stress disorders, probably by inducing hemodynamic and metabolic dysfunctions observed in metabolic syndrome.


Assuntos
Barorreflexo/fisiologia , Modelos Animais de Doenças , Coração/fisiopatologia , Síndrome Metabólica/fisiopatologia , Miocárdio/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Barorreflexo/efeitos dos fármacos , Frutose/administração & dosagem , Frutose/farmacologia , Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Resistência à Insulina , Interleucina-6/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Estresse Oxidativo/fisiologia , Ratos Endogâmicos SHR , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 313(4): H795-H809, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28710069

RESUMO

Increase in oxidative/nitrosative stress is one of the mechanisms associated with the development of cardiotoxicity due to doxorubicin (Dox), a potent chemotherapy drug. Previously, we reported mitigation of Dox-induced oxidative/nitrosative stress and apoptosis by vitamin C (Vit C) in isolated cardiomyocytes. In the present in vivo study in rats, we investigated the effect of prophylactic treatment with Vit C on Dox-induced apoptosis, inflammation, oxidative/nitrosative stress, cardiac dysfunction, and Vit C transporter proteins. Dox (cumulative dose: 15 mg/kg) in rats reduced systolic and diastolic cardiac function and caused structural damage. These changes were associated with a myocardial increase in reactive oxygen species, reduction in antioxidant enzyme activities, increased expression of apoptotic proteins, and inflammation. Dox also caused an increase in the expression of proapoptotic proteins Bax, Bnip-3, Bak, and caspase-3. An increase in oxidative/nitrosative stress attributable to Dox was indicated by an increase in superoxide, protein carbonyl formation, lipid peroxidation, nitric oxide (NO), NO synthase (NOS) activity, protein nitrosylation, and inducible NOS protein expression. Dox increased the levels of cardiac proinflammatory cytokines TNF-α, IL-1ß, and IL-6, whereas the expression of Vit C transporter proteins (sodium-ascorbate cotransporter 2 and glucose transporter 4) was reduced. Prophylactic and concurrent treatment with Vit C prevented all these changes and improved survival in the Vit C + Dox group. Vit C also improved Dox-mediated systolic and diastolic dysfunctions and structural damage. These results suggest a cardioprotective role of Vit C in Dox-induced cardiomyopathy by reducing oxidative/nitrosative stress, inflammation, and apoptosis, as well as improving Vit C transporter proteins.NEW & NOTEWORTHY This in vivo study provides novel data that vitamin C improves cardiac structure and function in doxorubicin-induced cardiomyopathy by reducing oxidative/nitrosative stress, apoptosis, and inflammation along with upregulation of cardiac vitamin C transporter proteins. The latter may have a crucial role in improving antioxidant status in this cardiomyopathy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antibióticos Antineoplásicos , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Cardiotônicos/farmacologia , Doxorrubicina , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Citocinas/biossíntese , Eletrocardiografia/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico Sintase/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Nitrogênio , Análise de Sobrevida
11.
Can J Physiol Pharmacol ; 95(10): 1078-1090, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28187269

RESUMO

A rapid rise in obesity, as well as physical inactivity, in industrialized countries is associated with fructose-consumption-mediated metabolic syndrome having a strong association with cardiovascular disease. Although insulin resistance is thought to be at the core, visceral obesity, hypertension, and hypertriglyceridemia are also considered important components of this metabolic disorder. In addition, various other abnormalities such as inflammation, oxidative stress, and elevated levels of uric acid are also part of this syndrome. Lifestyle changes through improved physical activity, as well as nutrition, are important approaches to minimize metabolic syndrome and its deleterious effects.


Assuntos
Açúcares da Dieta/efeitos adversos , Frutose/efeitos adversos , Inflamação/etiologia , Síndrome Metabólica/etiologia , Estresse Oxidativo , Animais , Pressão Sanguínea , Estilo de Vida Saudável , Humanos , Hipertensão/sangue , Hipertensão/etiologia , Hipertensão/fisiopatologia , Hiperuricemia/sangue , Hiperuricemia/etiologia , Hiperuricemia/metabolismo , Inflamação/sangue , Inflamação/fisiopatologia , Inflamação/terapia , Mediadores da Inflamação/sangue , Síndrome Metabólica/sangue , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/terapia , Prognóstico , Fatores de Risco , Comportamento de Redução do Risco , Ácido Úrico/sangue
12.
J Appl Physiol (1985) ; 121(4): 1032-1038, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27339182

RESUMO

We investigated whether resistance training (RT) vs. aerobic training (AT) differentially impacts on arterial pressure and related mechanisms in ovariectomized spontaneously hypertensive rats (SHRs). Female SHRs were ovariectomized and assigned to one of the following groups: sedentary, AT, or RT; sham sedentary SHR were used as control group. AT was performed on a treadmill, whereas RT was performed on a vertical ladder. Both exercise protocols were performed for 8 wk, 5 days/wk. Arterial pressure, baroreflex sensitivity, autonomic modulation, and cardiac oxidative stress parameters (lipid peroxidation, protein oxidation, redox balance, NADPH oxidase, and antioxidant enzymes activities) were analyzed. Ovariectomy increased mean arterial pressure (∼9 mmHg), sympathetic modulation (∼40%), and oxidative stress in sedentary rats. Both RT and AT reduced mean arterial pressure (∼20 and ∼8 mmHg, respectively) and improved baroreflex sensitivity compared with sedentary ovariectomized rats. However, RT-induced arterial pressure decrease was significantly less pronounced than AT. Lipid peroxidation and protein oxidation were decreased while antioxidant enzymes were increased in both trained groups vs. sedentaries. The reduced gluthatione was higher after AT vs. other groups, whereas oxidized gluthatione was lower after RT vs. AT. Moreover, sympathetic and parasympathetic modulations were highly correlated with cardiac oxidative stress parameters. In conclusion, both RT and AT can decrease arterial pressure in a model of hypertension and menopause; although, at different magnitudes this decrease was related to attenuated autonomic dysfunction in association with cardiac oxidative stress improvement in both exercise protocols.


Assuntos
Barorreflexo , Pressão Sanguínea , Hipertensão/fisiopatologia , Hipertensão/terapia , Menopausa , Estresse Oxidativo , Treinamento Resistido/métodos , Animais , Sistema Nervoso Autônomo/fisiopatologia , Feminino , Frequência Cardíaca , Hipertensão/diagnóstico , Peroxidação de Lipídeos , Condicionamento Físico Animal/métodos , Ratos , Ratos Endogâmicos SHR , Espécies Reativas de Oxigênio/sangue , Resultado do Tratamento
13.
Exp Diabetes Res ; 2012: 108680, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22203833

RESUMO

The objective of the present study was to investigate the effects of an acute aerobic exercise on arterial pressure (AP), heart rate (HR), and baroreflex sensitivity (BRS) in STZ-induced diabetic rats. Male Wistar rats were divided into control (n = 8) and diabetic (n = 8) groups. AP, HR, and BRS, which were measured by tachycardic and bradycardic (BR) responses to AP changes, were evaluated at rest (R) and postexercise session (PE) on a treadmill. At rest, STZ diabetes induced AP and HR reductions, associated with BR impairment. Attenuation in resting diabetes-induced AP (R: 103 ± 2 versus PE: 111 ± 3 mmHg) and HR (R: 290 ± 7 versus PE: 328 ± 10 bpm) reductions and BR dysfunction (R: -0.70 ± 0.06 versus PE: -1.21 ± 0.09 bpm/mmHg) was observed in the postexercise period. In conclusion, the hemodynamic and arterial baro-mediated control of circulation improvement in the postexercise period reinforces the role of exercise in the management of cardiovascular risk in diabetes.


Assuntos
Barorreflexo/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Condicionamento Físico Animal/fisiologia , Animais , Pressão Sanguínea/fisiologia , Bradicardia/fisiopatologia , Frequência Cardíaca/fisiologia , Masculino , Ratos , Ratos Wistar , Taquicardia/fisiopatologia
14.
Menopause ; 19(5): 562-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22157682

RESUMO

OBJECTIVE: The aim of this study was to investigate the cardiometabolic effects of exercise training in ovariectomized hypertensive rats both submitted and not submitted to fructose overload. METHODS: Spontaneously hypertensive ovariectomized rats were divided into sedentary and trained (THO) groups submitted to normal chow and sedentary and trained groups submitted to fructose overload (100 g/L in drinking water for 19 wk). Exercise training was performed on a treadmill (8 wk). Arterial pressure (AP) was directly recorded. Cardiovascular autonomic control was evaluated through pharmacological blockade (atropine and propranolol) and in the time and frequency domains by spectral analysis. RESULTS: The THO group presented reduced AP (approximately 16 mm Hg) and enhanced cardiac vagal tonus (approximately 49%) and baroreflex sensitivity (approximately 43%) compared with the sedentary hypertensive ovariectomized group. Exercise training attenuated metabolic impairment, resting tachycardia, cardiac and vascular sympathetic increases, and baroreflex sensitivity decrease induced by fructose overload in hypertensive rats. However, the trained hypertensive ovariectomized group submitted to fructose overload presented higher AP (approximately 32 mm Hg), associated with baroreflex sensitivity (approximately 69%) and parasympathetic dysfunctions compared with the THO group. CONCLUSIONS: These data suggest that the metabolic disorders in hypertensive rats after ovarian hormone deprivation could blunt and/or attenuate some exercise training benefits.


Assuntos
Menopausa , Síndrome Metabólica/fisiopatologia , Condicionamento Físico Animal/fisiologia , Animais , Barorreflexo , Glicemia , Pressão Sanguínea , Feminino , Frutose/administração & dosagem , Frequência Cardíaca , Modelos Animais , Ovariectomia , Sistema Nervoso Parassimpático/fisiopatologia , Ratos , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA