Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Isotopes Environ Health Stud ; : 1-16, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246103

RESUMO

The addition of Navicula sp. to shrimp nurseries can improve the growth of Penaeus vannamei reared in biofloc systems. However, the contribution of microalgae to the biofloc formation and the effective contribution to shrimp nutrition remain unknown. In this study, Navicula sp. was added to biofloc nursery systems of P. vannamei at distinct time frequencies for evaluating its nutritional contribution to shrimp growth. Nursery rearing was carried out in bioflocs for 35 days at a stocking density of 3000 post-larvae m-3. Shrimp were fed using a commercial feed plus fresh culture of Navicula sp. at different frequencies: no addition of Navicula sp. (WN - control), the addition of 10 × 104 cells mL-1 of the diatom every 5, 10 and 15 days (N5, N10 and N15, respectively). Food sources relative contribution to P. vannamei development was estimated using a Bayesian mixture model. The isotopic discrimination factor (Δ15N and Δ13C) for each food source was determined experimentally. After 35 days of culture, survival (∼93 %) was similar across all treatments but there was a significant difference in weight gain and feed conversion ratio. The N10 treatment (0.50 ± 0.05 g, 0.99 ± 0.01) exhibited better growth parameters when compared to the WN treatment (0.33 ± 0.07 g, 11.46 ± 0.30). Biofloc was the food source most assimilated by shrimp followed by Navicula sp. and commercial feed. Contribution of Navicula sp. was higher in the N5 treatment. In the treatments with diatom addition, an inverse correlation was observed between the relative contributions of biofloc and Navicula sp., indicating that Navicula sp. is not in the biofloc composition, but it is directly consumed by P. vannamei post-larvae. Biofloc and Navicula sp. exhibited larger contributions to the growth of shrimp, reinforcing the importance of natural food sources to the aquaculture of P. vannamei post-larvae.

2.
Environ Monit Assess ; 195(11): 1384, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889346

RESUMO

This review aims to perform an updated bibliographical survey on the cultivation of microalgae in domestic wastewater with a focus on biotechnological aspects. It was verified that the largest number of researches developed was about cultures in microalgae-bacteria consortium and mixed cultures of microalgae, followed by researches referring to the species Chlorella vulgaris and to the family Scenedesmaceae. According to published studies, these microorganisms are efficient in the biological treatment of domestic wastewater, as well as in the production of high value-added biomass, as they are capable of biosorbing the organic and inorganic compounds present in the culture medium, thus generating cells with high levels of lipids, proteins, and carbohydrates. These compounds are of great importance for different industry sectors, such as pharmaceuticals, food, and also for agriculture and aquaculture. In addition, biomolecules produced by microalgae can be extracted for several biotechnological applications; however, most studies focus on the production of biofuels, with biodiesel being the main one. There are also other emerging applications that still require more in-depth research, such as the use of biomass as a biofertilizer and biostimulant in the production of bioplastic. Therefore, it is concluded that the cultivation of microalgae in domestic wastewater is a sustainable way to promote effluent bioremediation and produce valuable biomass for the biobased industry, contributing to the development of technology for the green economy.


Assuntos
Chlorella vulgaris , Microalgas , Águas Residuárias , Biomassa , Biodegradação Ambiental , Monitoramento Ambiental , Biocombustíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA