RESUMO
Copper can be opportunely complexed to modulate oncogenic pathways, being a promising strategy for cancer treatment. Herein, three new copper(II) complexes containing long-chain aliphatic hydrazides and 1,10-phenanthroline (1,10-phen), namely, [Cu(octh)(1,10-phen)(H2O)](NO3)21, [Cu(dech)(1,10-phen)(H2O)](NO3)22 and [Cu(dodh)(1,10-phen)(H2O)](NO3)2.H2O 3 (where octh = octanoic hydrazide, dech = decanoic hydrazide, dodh = dodecanoic hydrazide) were successfully prepared and characterized by several physical-chemical methods. Furthermore, X-ray structural analysis of complex 2 indicated that the geometry around the copper(II) ion is distorted square-pyramidal, in which hydrazide and 1,10-phenanthroline act as bidentate ligands. A water molecule in the apical position completes the coordination sphere of the metal ion. All new copper(II) complexes were cytotoxic to breast cancer cell lines (MCF7, MDA-MB-453, MDA-MB-231, and MDA-MB-157) and selective when compared to the non tumor lineage MCF-10A. In particular, complex 2 showed half-maximal inhibitory concentration (IC50) values ranging between 2.7 and 13.4 µM in MDA-MB231 cells after 24 and 48 h of treatment, respectively. Furthermore, this complex proved to be more selective for tumor cell lines when compared to doxorubicin and docetaxel. Complex 2 inhibited the clonogenicity of MDA-MB231 cells, increasing adenosine diphosphate (ADP) hydrolysis and upregulating ecto-nucleoside triphosphate diphosphohydrolase 1 (ENTPD1) transcriptional levels. In this sense, we suggest that the inhibitory effect on cell proliferation may be related to the modulation of adenosine monophosphate (AMP) levels. Thus, a novel copper(II) complex with increased cytotoxic effects and selectivity against breast cancer cells was obtained, contributing to medicinal chemistry efforts toward the development of new chemotherapeutic agents.
Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias de Mama Triplo Negativas , Humanos , Cobre/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Hidrazinas , Hidrólise , Antineoplásicos/farmacologia , Antineoplásicos/química , Fenantrolinas/farmacologia , Fenantrolinas/química , Difosfato de Adenosina , Cristalografia por Raios XRESUMO
This article has been corrected. One of the author names was given incorrect. Please find in this erratum the correct author name: "Heloiza Diniz Nicolella" that should be regarded as final by the reader.
RESUMO
Human and bovine trichomoniasis are sexually transmitted diseases (STD) caused by Trichomonas vaginalis and Tritrichomonas foetus, respectively. Human trichomoniasis is the most common non-viral STD in the world and bovine trichomoniasis causes significant economic losses to breeders. Considering the significant impact of the infections caused by these protozoa and the treatment failures, the search for new therapeutic alternatives becomes crucial. In this study the effect of diamines and amino alcohols in the in vitro viability of trichomonads was evaluated. Screening demonstrated the high activity of diamine 4 against these protozoa. Although cytotoxicity against HMVII cell line and slight hemolysis were observed in vitro, the compound showed no toxic effect on the Galleria mellonella in vivo model. Importantly, diamine 4 was active against both trichomonads species at 6h and 24h of incubation, and these effects was reverted by putrescine, a polyamine, suggesting competition for the same metabolic pathway. These findings indicate that the mechanism of action of diamine 4 is through the polyamine metabolism, a pathway distinct from that presented by metronidazole, the drug usually used to treat trichomoniasis and to which resistance is widely reported. These data demonstrate the importance of diamines as potential novel candidates as anti-T. vaginalis and anti-T. foetus agents.
Assuntos
Diaminas/farmacologia , Poliaminas/metabolismo , Trichomonas vaginalis/efeitos dos fármacos , Tritrichomonas foetus/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Trichomonas vaginalis/crescimento & desenvolvimento , Tritrichomonas foetus/crescimento & desenvolvimentoRESUMO
Novel lipophilic gold(I) complexes containing 1,3,4-oxadiazol-2-thione or 1,3-thiazolidine-2-thione derivatives were synthesized and characterized by IR, high resolution mass spectrometry, and 1H, 13C 31P NMR. The cytotoxicity of the compounds was evaluated considering cisplatin and/or auranofin as reference in different tumor cell lines: colon cancer (CT26WT), metastatic skin melanoma (B16F10), breast adenocarcinoma (MCF-7), cervical carcinoma (HeLa), glioblastoma (M059 J). Normal human lung fibroblasts (GM07492-A) and kidney normal cell (BHK-21) were also evaluated. The gold(I) complexes were more active than their respective free ligands and cisplatin. Furthermore, antibacterial activity was evaluated against Gram-positive bacteria Staphylococcus aureus ATCC 25213, Staphylococcus epidermidis ATCC 12228 and Gram-negative bacteria Escherichia coli ATCC 11229 and Pseudomonas aeruginosa ATCC 27853 and expressed as the minimum inhibitory concentration (MIC). The complexes exhibited lower MIC values when compared to the ligands and chloramphenicol against Gram-positive bacteria and Gram-negative bacteria. Escherichia coli was sensitive one to the action of gold(I) complexes.