Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag Res ; : 734242X241237092, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576307

RESUMO

The generation of industrial waste is mainly dependent on several factors, including the type of industry, production capacity, technology use and raw materials involved in the manufacturing processes. The present study is a cross-sectional study that was conducted with 580 industries under six industrial sectors in Sri Lanka in 2022. The main objective of this research was to investigate solid waste generation and estimate the recyclable fraction in the waste. Furthermore, this study calculated the prevailing recycling rate of each industrial sector and the waste generation per person employed in the sector. Industrial processes, the types and quantities of waste, waste disposal methods and management activities in terms of recycling and disposal were evaluated through a structured questionnaire and random field observations. The study identified that the composition of selected recyclable items was 16.7% of the total waste generated in the industrial sector. The prevailing rate of recycling in different sectors was as follows: manufacturing of food products (36.6%), manufacturing of beverages (82.3%), manufacturing of textiles (68.6%), manufacturing of chemical and chemical products (28.5%), manufacturing of rubber and plastic (46.5%) and manufacturing of metallic mineral products (17.8%) from the total generated recyclable material. The study further estimated the waste intensity (waste generation per unit of product output) of the industrial sectors as follows: 0.38 (manufacturing of food products), 0.36 (manufacturing of beverages), 0.27 (manufacturing of textiles), 0.26 (manufacturing of chemical and chemical products), 0.17 (manufacturing of rubber and plastic) and 0.16 (manufacturing of non-metallic mineral products).

2.
Mar Pollut Bull ; 196: 115532, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871458

RESUMO

Ocean ecosystems and global well-being are connected and significant. Over the past few decades, shipping accidents have caused severe marine pollution all over the world, and after a lull during the hike of COVID pandemic, polluting events are again on the rise. Marine pollution caused by maritime accidents requires a clear understanding of the fate of spilled pollutants, post-disaster challenges, pollutant removal strategies, and mitigation strategies against environmental damage. Considering proactive prevention is always better than reactive response, while understanding accidents and ensuring corrective action is even more important. This Special Issue provides a broad overview of the marine and coastal pollution, not limited to, but focused on the 2021 X-Press Pearl containership disaster off the coast of Sri Lanka, and the impact on the marine environment. Topics address the most unprecedented nurdle and pyroplastic spill and subsequent oil spillage of the X-Press Pearl, causes and consequences of polluting ship disasters, novel oil pollution mitigation approaches, needfulness of post-disaster environmental assessment plans, future requirements for ecosystem restoration and environmental management of shipping, and other aspects of coastal pollution that are timely to consider unprecedented pressures, which marine environments are now subjected to.


Assuntos
Desastres , Poluentes Ambientais , Poluição por Petróleo , Ecossistema , Poluição Ambiental , Poluição por Petróleo/prevenção & controle , Acidentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA