Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Technol ; 42(16): 2599-2609, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31868135

RESUMO

In this work, the adsorption of sodium diclofenac (DCF) on graphene oxide nanosheets (GON) was evaluated. GON was synthesized by the modified Hummers method and characterized regarding its composition, morphology, and surface load. It was applied in batch adsorption tests. The process was evaluated from the kinetic, isothermal and thermodynamic properties, and parameters such as adsorbent mass and solution pH were optimized. The best working condition was observed at the natural pH of the solution (6.2) and 0.25 g L-1 adsorbent dosage. The pseudo-first-order and pseudo-second-order models were applied to verify the behaviour of the adsorption kinetics, and the adsorption isotherms were also developed at temperatures ranging from 25°C to 45°C. The isotherm models of Langmuir, Freundlich, and Temkim were applied to the equilibrium data. The thermodynamic parameters of enthalpy, entropy, and Gibbs free energy were evaluated to describe the behaviour of the adsorptive process. The maximum adsorption capacity of DCF at 25°C was 128.74 mg g-1 with a removal rate of 74% in 300 min. The process was favourable and spontaneous with adsorptive capacity decreasing with increasing temperature. In addition, an adsorption mechanism was proposed to show the possible bonds that occur between adsorbate and adsorbent and the interactions formed through the influence of pH.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Diclofenaco , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Termodinâmica , Poluentes Químicos da Água/análise
2.
Environ Sci Pollut Res Int ; 28(5): 5731-5741, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32970264

RESUMO

The present study aimed to investigate the application of graphene oxide (GO) as adsorbent material for the removal of atrazine (ATZ). The material produced was characterized to investigate the characteristics and applied as an adsorbent. The material obtained after the synthesis process presented oxygenated functional groups, which contributed to the development of a good adsorbent material. Studies were carried out to verify the influence of adsorbent material mass and initial pH of ATZ solution in adsorption capacity. Kinetic study determined that pseudo-second-order model best describes adsorbate-adsorbent interaction, with equilibrium time of 72 h. The effect of temperature on the material adsorption capacity was also studied. The Langmuir isotherm is the best fit to describe adsorption process GO-ATZ and maximum adsorption capacity obtained was 23.844 ± 0.694 mg g-1, at 318 K. Variations in process energies were determined, being a spontaneous adsorption, endothermic and characteristic of physical and chemical adsorption. Finally, influence of salts in solution on adsorption capacity was studied; the conclusion was that the presence of electrolytes affects the adsorption capacity of the material.


Assuntos
Atrazina , Grafite , Poluentes Químicos da Água , Adsorção , Compreensão , Cinética , Óxidos , Poluentes Químicos da Água/análise
3.
Environ Technol ; 41(13): 1648-1663, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30382011

RESUMO

The lack of data regarding the mechanisms at work in the coagulation processes of different substances using magnetic coagulants makes it difficult to understand the phenomena involved and, consequently, makes it difficult to elucidate the mechanisms involved in the coagulation process. Thus, the present study aimed at evaluating the performance of a magnetic coagulant composed of iron oxide (Fe3O4) functionalised with Moringa oleifera (MO) salt extract in the treatment of a synthetic food industry wastewater simulated by the addition of dye to distilled water. From the data obtained in the coagulation/flocculation assays followed by magnetic sedimentation, the different mechanisms involved were evaluated for their fit to pseudo-first order, pseudo-second order, Langmuir and Freundlich theoretical models. The adjustments to the models were evaluated from the kinetic data and indicated that at pH 3 the best fit was to the pseudo-second order model, whereas for pH 6 and 9 the best fit was for the pseudo-first order model. The isothermal data were adjusted to the Langmuir model, suggesting adsorption of a monolayer, characterising chemical processes with selective adsorption. In relation to the mechanisms involved in the process, it is suggested that the neutralisation of charges was the predominant mechanism in the removal of tartrazine at pH 3, whereas at the other pH values evaluated the mechanism that prevailed was monolayer adsorption. Thus, the proposed magnetic coagulant was found to be an efficient alternative material for tartrazine removal, allowing easy separation in the sedimentation stage while also being compatible with environmental issues.


Assuntos
Moringa oleifera , Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Extratos Vegetais , Tartrazina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA