Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14885, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937525

RESUMO

Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.


Assuntos
Acidithiobacillus , Marte , Acidithiobacillus/metabolismo , Acidithiobacillus/crescimento & desenvolvimento , Oxirredução , Ferro/metabolismo , Concentração de Íons de Hidrogênio , Compostos Ferrosos/metabolismo , Minerais/metabolismo , Exobiologia , Meio Ambiente Extraterreno , Carbonatos , Compostos Férricos
2.
Mem Inst Oswaldo Cruz ; 115: e200342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33111751

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was confirmed in Brazil in February 2020, the first cases were followed by an increase in the number of cases throughout the country, resulting in an important public health crisis that requires fast and coordinated responses. OBJECTIVES: The objective of this work is to describe the isolation and propagation properties of SARS-CoV-2 isolates from the first confirmed cases of coronavirus disease 2019 (COVID-19) in Brazil. METHODS: After diagnosis in patients that returned from Italy to the São Paulo city in late February by RT-PCR, SARS-CoV-2 isolates were obtained in cell cultures and characterised by full genome sequencing, electron microscopy and in vitro replication properties. FINDINGS: The virus isolate was recovered from nasopharyngeal specimen, propagated in Vero cells (E6, CCL-81 and hSLAM), with clear cytopathic effects, and characterised by full genome sequencing, electron microscopy and in vitro replication properties. Virus stocks - viable (titre 2.11 × 106 TCID50/mL, titre 1.5 × 106 PFUs/mL) and inactivated from isolate SARS.CoV2/SP02.2020.HIAE.Br were prepared and set available to the public health authorities and the scientific community in Brazil and abroad. MAIN CONCLUSION: We believe that the protocols for virus growth and studies here described and the distribution initiative may constitute a viable model for other developing countries, not only to help a rapid effective pandemic response, but also to facilitate and support basic scientific research.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Animais , Brasil , COVID-19 , Chlorocebus aethiops , Humanos , SARS-CoV-2 , Células Vero
3.
Sci Rep ; 9(1): 7768, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123327

RESUMO

Pseudomonas syringae produces highly efficient biological ice nuclei (IN) that were proposed to influence precipitation by freezing water in clouds. This bacterium may be capable of dispersing through the atmosphere, having been reported in rain, snow, and cloud water samples. This study assesses its survival and maintenance of IN activity under stressing conditions present at high altitudes, such as UV radiation within clouds. Strains of the pathovars syringae and garcae were compared to Escherichia coli. While UV-C effectively inactivated these cells, the Pseudomonas were much more tolerant to UV-B. The P. syringae strains were also more resistant to radiation from a solar simulator, composed of UV-A and UV-B, while only one of them suffered a decline in IN activity at -5 °C after long exposures. Desiccation at different relative humidity values also affected the IN, but some activity at -5 °C was always maintained. The pathovar garcae tended to be more resistant than the pathovar syringae, particularly to desiccation, though its IN were found to be generally more sensitive. Compared to E. coli, the P. syringae strains appear to be better adapted to survival under conditions present at high altitudes and in clouds.


Assuntos
Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/metabolismo , Altitude , Atmosfera , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Clima , Temperatura Baixa/efeitos adversos , Escherichia coli/metabolismo , Gelo , Chuva , Neve/microbiologia , Raios Ultravioleta/efeitos adversos
4.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266724

RESUMO

The high-altitude atmosphere is a harsh environment with extremely low temperatures, low pressure, and high UV irradiation. For this reason, it has been proposed as an analogue for Mars, presenting deleterious factors similar to those on the surface of that planet. We evaluated the survival of extremophilic UV-resistant yeasts isolated from a high-elevation area in the Atacama Desert under stratospheric conditions. As biological controls, intrinsically resistant Bacillus subtilis spores were used. Experiments were performed in two independent stratospheric balloon flights and with an environmental simulation chamber. The three following different conditions were evaluated: (i) desiccation, (ii) desiccation plus exposure to stratospheric low pressure and temperature, and (3) desiccation plus exposure to the full stratospheric environment (UV, low pressure, and temperature). Two strains, Naganishia (Cryptococcus) friedmannii 16LV2 and Exophiala sp. strain 15LV1, survived full exposures to the stratosphere in larger numbers than did B. subtilis spores. Holtermanniella watticus (also known as Holtermanniella wattica) 16LV1, however, suffered a substantial loss in viability upon desiccation and did not survive the stratospheric UV exposure. The remarkable resilience of N. friedmannii and Exophiala sp. 15LV1 under the extreme Mars-like conditions of the stratosphere confirms its potential as a eukaryotic model for astrobiology. Additionally, our results with N. friedmannii strengthen the recent hypothesis that yeasts belonging to the Naganishia genus are fit for aerial dispersion, which might account for the observed abundance of this species in high-elevation soils.IMPORTANCE Studies of eukaryotic microorganisms under conditions of astrobiological relevance, as well as the aerial dispersion potential of extremophilic yeasts, are still lacking in the literature compared to works with bacteria. Using stratospheric balloon flights and a simulation chamber, we demonstrate that yeasts isolated from an extreme environment are capable of surviving all stressors found in the stratosphere, including intense UV irradiation, scoring an even higher survival than B. subtilis spores. Notably, the yeast N. friedmannii, which displayed one of the highest tolerances to the stratospheric environment in the experiments, was recently proposed to be adapted to airborne transportation, although such a hypothesis had not yet been tested. Our results strengthen such an assumption and can help explain the observed distribution and ecology of this particular yeast species.


Assuntos
Extremófilos/crescimento & desenvolvimento , Leveduras/crescimento & desenvolvimento , Atmosfera , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/efeitos da radiação , Temperatura Baixa , Dessecação , Ambientes Extremos , Extremófilos/metabolismo , Extremófilos/efeitos da radiação , Marte , Viabilidade Microbiana , Raios Ultravioleta , Água/análise , Água/metabolismo , Leveduras/metabolismo , Leveduras/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA