Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37504869

RESUMO

Small interfering RNA (siRNA) molecules have limited transfection efficiency and stability, necessitating the use of delivery systems to be effective in gene knockdown therapies. In this regard, lipid-polymeric nanocarriers have emerged as a promising class of nanoparticles for siRNA delivery, particularly for topical applications. We proposed the use of solid lipid-polymer hybrid nanoparticles (SLPHNs) as topical delivery systems for siRNA. This approach was evaluated by assessing the ability of SLPHNs-siRNA complexes to internalize siRNA molecules and both to penetrate skin layers in vitro and induce gene knocking down in a skin cell line. The SLPHNs were formed by a specific composition of solid lipids, a surfactant polymer as a dispersive agent, and a cationic polymer as a complexing agent for siRNA. The optimized nanocarriers exhibited a spherical shape with a smooth surface. The average diameter of the nanoparticles was found to be 200 nm, and the zeta potential was measured to be +20 mV. Furthermore, these nanocarriers demonstrated excellent stability when stored at 4 °C over a period of 90 days. In vitro and in vivo permeation studies showed that SLPHNs increased the cutaneous penetration of fluorescent-labeled siRNA, which reached deeper skin layers. Efficacy studies were conducted on keratinocytes and fibroblasts, showing that SLPHNs maintained cell viability and high cellular uptake. Furthermore, SLPHNs complexed with siRNA against Firefly luciferase (siLuc) reduced luciferase expression, proving the efficacy of this nanocarrier in providing adequate intracellular release of siRNA for silencing specific genes. Based on these results, the developed carriers are promising siRNA delivery systems for skin disease therapy.

2.
J Control Release ; 338: 316-329, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437914

RESUMO

Psoriasis is a chronic inflammatory skin disease that presents increased expression of tumor necrosis factor α (TNFα), a proinflammatory cytokine. The discovery of RNA interference (RNAi), mediated by short interfering RNA (siRNA), made it possible for the expression of some genes to be eliminated. However, for its application, it is necessary to use carriers that can protect siRNA and release it in the target cells. Herein, we developed a delivery system for siRNA based on hybrid polymer-lipid nanoparticles (PLNs) and combined this system with photochemical internalization (PCI), photoactivating the photosensitizer TPPS2a, to optimize the endosomal escape of TNFα siRNA in the cytoplasm, aiming to use the system as a topical formulation to treat psoriasis. The PLNs composed of 2.0% of Compritol® 888 ATO (lipid), 1.5% of poloxamer 188 and 0.1% of the cationic polymer poly(allylamine hydrochloride) showed an average nanoparticle size of 142 nm, a zeta potential of +25 mV, and the ability to efficiently coencapsulate TPPS2a and complexed siRNA. In addition, these materials did not present cellular toxicity and showed high cellular uptake. In vitro delivery studies using porcine skin model revealed that the PLNs delivered siRNA and TPPS2a into the skin. The efficacy was verified using an in vivo psoriasis animal (hairless mouse) model induced by imiquimod (IMQ) cream. The results revealed that PLN-TPPS2a-TNFα siRNA combined with PCI resulted in a decrease in the levels of TNFα, showing the efficiency of the treatment to silence this cytokine in psoriatic lesions, which was accompanied by a reduction in the redness and scaling of the mouse skin. The results showed the potential of the developed PLNs in combined silencing gene therapy and PCI for topical treatment of psoriasis.


Assuntos
Nanopartículas , Psoríase , Animais , Imiquimode , Camundongos , Psoríase/tratamento farmacológico , Psoríase/genética , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA