Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pharmaceutics ; 16(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39204431

RESUMO

This study describes the synthesis and characterization of chlorambucil (CLB)-functionalized mesoporous silica nanoparticles (MSNs) for potential application in cancer therapy. The nanoparticles were designed with a diameter between 20 and 50 nm to optimize cellular uptake and avoid rapid clearance from the bloodstream. The synthesis method involved modifying a previously reported technique to reduce particle size. Successful functionalization with CLB was confirmed through various techniques, including Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The cytotoxicity of the CLB-functionalized nanoparticles (MSN@NH2-CLB) was evaluated against human lung adenocarcinoma cells (A549) and colon carcinoma cells (CT26WT). The results suggest significantly higher cytotoxicity of MSN@NH2-CLB compared to unbound CLB, with improved selectivity towards cancer cells over normal cells. This suggests that MSN@NH2-CLB holds promise as a drug delivery system for targeted cancer therapy.

2.
Crit Care Explor ; 4(8): e0734, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35928539

RESUMO

This study sought to identify monocyte alterations from septic patients after hospital discharge by evaluating gene expression of inflammatory mediators and monocyte polarization markers. It was hypothesized that sepsis reprograms the inflammatory state of monocytes, causing effects that persist after hospital discharge and influencing patient outcomes. DESIGN: The gene expression patterns of inflammatory receptors, M1 and M2 macrophage polarization markers, NLRP3 inflammasome components, and pro- and anti-inflammatory cytokines in monocytes were assessed. PATIENTS: Thirty-four patients from the University of São Paulo Hospital, during the acute sepsis phase (phase A), immediately after ICU discharge (phase B), and 3 months (phase C), 6 months (phase D), 1 year (phase E), and 3 years (phase F) after discharge, were included. Patients that died during phases A and B were grouped separately, and the remaining patients were collectively termed the survivor group. MEASUREMENTS AND MAIN RESULTS: The gene expression of toll-like receptor (TLR)2 and TLR4 (inflammatory receptors), NLRP3, NFκB1, adaptor molecule apoptosis-associated speck-like protein containing a CARD, caspase 1, caspase 11, and caspase 12 (NLRP3 inflammasome components), interleukin-1α, interleukin-1ß, interleukin-18, and high-mobility group box 1 protein (proinflammatory cytokines), interleukin-10 (anti-inflammatory cytokine), C-X-C motif chemokine ligand 10, C-X-C motif chemokine ligand 11, and interleukin-12p35 (M1 inflammatory polarization markers), and C-C motif chemokine ligand 14, C-C motif chemokine ligand 22, transforming growth factor-beta (TGF-ß), SR-B1, and peroxisome proliferator-activated receptor γ (M2 anti-inflammatory polarization and tissue repair markers) was upregulated in monocytes from phase A until phase E compared with the control group. CONCLUSIONS: Sepsis reprograms the inflammatory state of monocytes, probably contributing to postsepsis syndrome development and mortality.

3.
J Photochem Photobiol B ; 234: 112546, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36029759

RESUMO

The field of photodynamic therapy (PDT) for treating various malignant neoplasms has been given researchers' attention due to its ability to be a selective and minimally invasive cancer therapy strategy. The possibility of tumor cell infection and hence high recurrence rates in cancer patients tends to restrict autologous transplantation. So, the photodynamic tissue purging process, which consists of selective photoinactivation of the malignant cells in the graft, is defined as a compromising strategy to purify contaminated tissues before transplantation. In this strategy, the direct malignant cells' death results from the reactive oxygen species (ROS) generation through the activation of a photosensitizer (PS) by light exposure in the presence of oxygen. Since new PS generations can effectively penetrate the tissue, PDT could be an ideal ex vivo tissue purging protocol that eradicates cancer cells derived from various malignancies. The challenge is that the applied pharmacologic ex vivo tissue purging should efficiently induce tumor cells with minor influence on normal tissue cells. This review aims to provide an overview of the current status of the most effective PDT strategies and PS development concerning their potential application in ex vivo purging before hematopoietic stem cell or ovarian tissue transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Fotoquimioterapia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Transplante Autólogo/métodos
4.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35100566

RESUMO

Short time treatment with reduced dosages of selol-loaded PLGA nanocapsules (NcSel) combined with magnetic hyperthermia (MHT) is evaluated in aged Erhlich tumor-bearing mice. Clinical, hematological, biochemical, genotoxic and histopathological parameters are assessed during 7 d treatment with NcSel and MHT, separately or combined. The time evolution of the tumor volume is successfully modeled using the logistic mathematical model. The combined therapy comprising NcSel and MHT is able to hinder primary tumor growth and a case of complete tumor remission is recorded. Moreover, no metastasis was diagnosed and the adverse effects are negligible. NcSel plus MHT may represent an effective and safe alternative to cancer control in aged patients. Future clinical trials are encouraged.


Assuntos
Neoplasias da Mama/terapia , Hipertermia Induzida , Nanopartículas de Magnetita/uso terapêutico , Nanocápsulas/uso terapêutico , Compostos de Selênio/uso terapêutico , Animais , Neoplasias da Mama/patologia , Carcinoma de Ehrlich/patologia , Carcinoma de Ehrlich/terapia , Ciclo Celular/efeitos dos fármacos , Terapia Combinada , Fragmentação do DNA/efeitos dos fármacos , Feminino , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Compostos de Selênio/química , Fatores de Tempo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
5.
Life Sci ; 209: 300-312, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30102904

RESUMO

AIMS: Previous studies performed by our research group indicated that cytosporone analogues are capable of prevent or repair DNA damages. This work presents the evaluation of the activity of AMS35AA for metastatic murine melanoma cells (B16F10) in experimental model in vitro and, in pre-clinic assay of metastatic melanoma in vivo, using mice lineage C57BL/6. MAIN METHODS: In vitro assays were performed: MTT and comet assay, flow cytometry evaluation, gene expression assay by RT-PCR, qualitative evaluation of cell death using B16F10 cells. In vivo assays: micronucleus and comet assay, splenic phagocytosis, melanoma murine model and histopathological analysis, using mice lineage C57BL/6 (n = 20). KEY FINDINGS: In vitro results performed by MTT assay showed that AMS35AA is cytotoxic for B16F10 cells (p < 0.05). Based on comet assay the genotoxicity of the IC50 was determined (95.83 µg/mL) (p < 0.05). These data were corroborated by flow cytometry analysis after the treatment with AMS35AA, which indicates the cellular death by apoptosis (p < 0.05) and increasing of ATR, p53, p21 and GADD45 gene expressions verified using RT-PCR. With respect to in vivo results, it was observed that AMS35AA did not show genotoxic activity. Data of tumor volume ex vivo indicate reduction of tumor for the treated animals with AMS35AA up to 15.84×, which is superior to Dacarbazina (50 mg/Kg, p.c.; i.p.). SIGNIFICANCE: In summary, the study showed that AMS35AA reveals relevant results regarding to cytotoxicity of B16F10 murine melanoma cells, inducing death by apoptosis via mitochondrial and/or mediated by DNA damages.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Resorcinóis/química , Animais , Ensaio Cometa , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas
6.
Toxicol Appl Pharmacol ; 356: 127-138, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30092250

RESUMO

Copper (II) complexes are promising in the development of new synthetic models for cancer treatment. In this context, we synthesized a new copper complex containing the pharmacophore group 1,4-dioxo-2-butenyl, the Bis(((Z)-4-((4-chlorophenyl) amino)-4-oxobut-2-enoyl)oxy) copper compound and we evaluated its antitumor activity in 4 T1 murine mammary adenocarcinoma cells and their toxicogenic effect in Swiss mice. The compound demonstrated cytotoxicity and genotoxicity to 4 T1 cells, and after cell cycle arrest in G1, which occurred by the increase in ATM and p21 expression, it induced the cells to apoptosis by increasing BAX and caspase-7. In vivo the compound was genotoxic in mice but did not show permanent damage, observed by the absence of increased micronucleus frequency, and did not induce changes in the biometric parameters of the animals. These results indicate that the new copper complex, described firstly in this work, presents therapeutic potential for breast cancer.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/uso terapêutico , Cobre/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Cobre/química , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Baço/citologia , Baço/efeitos dos fármacos
7.
J Nanobiotechnology ; 16(1): 9, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382332

RESUMO

BACKGROUND: In the photodynamic therapy (PDT), the photosensitizer absorbs light and transfers the energy of the excited state to the oxygen in the cell environment producing reactive oxygen species (ROS), that in its turn, may cause cell damage. In the photothermal therapy (PTT), light also is responsible for activating the photothermal agent, which converts the absorbed energy in heat. Graphene oxide is a carbon-based material that presents photothermal activity. Its physical properties allow the association with the photosensitizer methylene blue and consequently the production of ROS when submitted to light irradiation. Therefore, the association between nanographene oxide and methylene blue could represent a strategy to enhance therapeutic actions. In this work, we report the nanographene oxide-methylene blue platform (NanoGO-MB) used to promote tumor ablation in combination with photodynamic and photothermal therapies against a syngeneic orthotopic murine breast cancer model. RESULTS: In vitro, NanoGO-MB presented 50% of the reactive oxygen species production compared to the free MB after LED light irradiation, and a temperature increase of ~ 40 °C followed by laser irradiation. On cells, the ROS production by the nanoplatform displayed higher values in tumor than normal cells. In vivo assays demonstrated a synergistic effect obtained by the combined PDT/PTT therapies using NanoGO-MB, which promoted complete tumor ablation in 5/5 animals. Up to 30 days after the last treatment, there was no tumor regrowth compared with only PDT or PTT groups, which displayed tumoral bioluminescence 63-fold higher than the combined treatment group. Histological studies confirmed that the combined therapies were able to prevent tumor regrowth and liver, lung and spleen metastasis. In addition, low systemic toxicity was observed in pathologic examinations of liver, spleen, lungs, and kidneys. CONCLUSIONS: The treatment with combined PDT/PTT therapies using NanoGO-MB induced more toxicity on breast carcinoma cells than on normal cells. In vivo, the combined therapies promoted complete tumor ablation and metastasis prevention while only PDT or PTT were unable to stop tumor development. The results show the potential of NanoGO-MB in combination with the phototherapies in the treatment of the breast cancer and metastasis prevention.


Assuntos
Técnicas de Ablação , Grafite/química , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Azul de Metileno/química , Nanopartículas/química , Fototerapia , Animais , Apoptose , Peso Corporal , Linhagem Celular Tumoral , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Luminescência , Neoplasias Mamárias Animais/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanopartículas/ultraestrutura , Metástase Neoplásica , Fotoquimioterapia , Espécies Reativas de Oxigênio , Carga Tumoral
8.
Artif Cells Nanomed Biotechnol ; 46(8): 2002-2012, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29179603

RESUMO

Nanocapsules (NCS-DOX) with an oily core of selol and a shell of poly(methyl vinyl ether-co-maleic anhydride) covalently conjugated to doxorubicin were developed. These nanocapsules are spherical, with an average hydrodynamic diameter of about 170 nm, and with negative zeta potential. NCS-DOX effectively co-delivered the selol and the doxorubicin into 4T1 cells and changed the intracellular distribution of DOX from the nuclei to the mitochondria. Moreover, a significantly increased cytotoxicity against 4T1 cells was observed, which is suggestive of additive or synergic effect of selol and doxorubicin. In conclusion, PVM/MA nanocapsules are suitable platforms to co-deliver drugs into cancer cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Doxorrubicina , Neoplasias Mamárias Animais/tratamento farmacológico , Nanocápsulas , Compostos de Selênio , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células NIH 3T3 , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Compostos de Selênio/química , Compostos de Selênio/farmacocinética , Compostos de Selênio/farmacologia
9.
J Photochem Photobiol B ; 167: 208-215, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28086121

RESUMO

BACKGROUND AND OBJECTIVE: Emerging evidence suggests that photodynamic therapy (PDT) can exhibit immunomodulatory activity. The purpose of the present study was to analyse cytokine profiles after application of PDT in gingival tissues of rats with ligature-induced periodontal disease (PD). STUDY DESIGN/MATERIAL AND METHODS: Periodontal disease was induced through the introduction of a cotton thread around the first left mandibular molar, while the right side molars did not receive ligatures. After 7days of PD evolution, ligatures were removed from the left side, and the animals were randomically divided into the following treatment groups: I, rats without treatment; II, rats received chloro-aluminum phthalocyanine (AlClPc); III, rats received low-level laser alone; and IV, rats received AlClPc associated with low-level laser (PDT). The animals were killed 7days after the treatments, and the mandibles were histologically processed to assess morphological and immunohistochemical profile, while gingival tissues were removed for quantification of tumor necrosis factor (TNF)-α, interleukin (IL-)1ß and IL-10 expression (by ELISA). RESULTS: Histomorphological analysis of periodontal tissues demonstrated that PDT-treated animals show tissue necrosis, as well as lower TNF- α expression, compared to ligatured animals treated with AlClPc alone. CONCLUSIONS: It was concluded that PDT using AlClPc entrapped in a lipid nanoemulsion may be useful in therapies, because of immunomodulatory effects that decreased the inflammatory response and cause tissue destruction.


Assuntos
Modelos Animais de Doenças , Indóis/uso terapêutico , Compostos Organometálicos/uso terapêutico , Periodontite/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Emulsões , Feminino , Camundongos , Periodontite/patologia , Periodontite/prevenção & controle , Fotoquimioterapia , Ratos , Ratos Wistar
10.
Mini Rev Med Chem ; 17(3): 224-236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27739361

RESUMO

Nanotechnology has provided powerful tools to improve the chemotherapy of cancer. Different nanostructures have been developed which deliver the anticancer drugs more selectively to tumor than to healthy tissues. The result has generally been the increase in efficacy and safety of classical anticancer drugs. In recent years, several studies have focused not only on the delivery of anticancer drugs to tumors, but also on delivering the drugs to specific organelles of cancer cells. Endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, and nucleus have been the targets of different nanostructured drug delivery systems developed with the goal of circumventing drugresistance, increasing drug efficacy, and so on. So far, the results described in the literature show that this strategy may be used to improve chemotherapy outcomes. In this review a discussion is presented on the strategies described in the literature to deliver anticancer drugs to specific organelles of cancer cells by using nanostructures.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Neoplasias/metabolismo , Neoplasias/patologia , Organelas/metabolismo , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico
11.
Photodiagnosis Photodyn Ther ; 12(4): 592-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26521145

RESUMO

BACKGROUND: Photodynamic therapy (PDT) uses photosensitizing agents, which are delivered in target cells, followed by local application of visible light in specific wavelengths. This reaction produce reactive oxygen species able to induce cell death by apoptosis or necrosis, injured to the local vasculature, and exert important effects on the immune system. OBJECTIVE: The present work evaluated the clinical findings, histomorphological alterations and immunodetection of VEGF after PDT using chloro-aluminum phthalocyanine (AlClPc) entrapped in a lipid nanoemulsion in a split-mouth clinical trial. MATERIAL AND METHODS: Eight healthy volunteers with clinical indication for extraction were included in the study. Seven days before the extraction 40 ul of nanoemulsion AlClPc 5µM was injected into gingival tissue followed by irradiation with diode laser, the contralateral side was used as control. Tissue specimens were removed seven days after the PDT and divided into two groups (test and control groups) for histological and immunohistochemical analysis. Patients were monitored at days, 0, 7, 14 and 30 to assess adverse effects of the therapy. RESULTS: The therapy was well tolerated by all patients. Adverse effects were short-time and completely reversible. Areas of edema, vascular congestion, and intense vascularization were viewed in gingival samples that received PDT. Additionally, dystrophic calcification was observed in subepithelial region. VEGF showed moderate to strong immunostaining in specimens subjected to PDT. CONCLUSIONS: Taken together, the results showed that the protocol used in this study mediated by nanoemulsion containing AlClPc is safe for clinical application in gingival tissue and suggests that VEGF is increased after PDT.


Assuntos
Gengiva/efeitos dos fármacos , Indóis/farmacologia , Compostos Organometálicos/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Adulto , Emulsões , Feminino , Gengiva/patologia , Humanos , Imuno-Histoquímica , Indóis/administração & dosagem , Indóis/efeitos adversos , Lasers Semicondutores , Masculino , Pessoa de Meia-Idade , Nanopartículas , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/efeitos adversos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/efeitos adversos , Fatores de Tempo , Extração Dentária
12.
Nano Rev ; 52014.
Artigo em Inglês | MEDLINE | ID: mdl-25317253

RESUMO

Malignant melanoma is the most aggressive form of skin cancer and has been traditionally considered difficult to treat. The worldwide incidence of melanoma has been increasing faster than any other type of cancer. Early detection, surgery, and adjuvant therapy enable improved outcomes; nonetheless, the prognosis of metastatic melanoma remains poor. Several therapies have been investigated for the treatment of melanoma; however, current treatment options for patients with metastatic disease are limited and non-curative in the majority of cases. Photodynamic therapy (PDT) has been proposed as a promising minimally invasive therapeutic procedure that employs three essential elements to induce cell death: a photosensitizer, light of a specific wavelength, and molecular oxygen. However, classical PDT has shown some drawbacks that limit its clinical application. In view of this, the use of nanotechnology has been considered since it provides many tools that can be applied to PDT to circumvent these limitations and bring new perspectives for the application of this therapy for different types of diseases. On that ground, this review focuses on the potential use of developing nanotechnologies able to bring significant benefits for anticancer PDT, aiming to reach higher efficacy and safety for patients with malignant melanoma.

13.
J Biomed Nanotechnol ; 9(7): 1261-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23909142

RESUMO

This work aimed to test a dextran-functionalized magnetic fluid (DexMF) sample in mediating magnetohyperthermia to treat an advanced clinical Ehrlich-solid-tumor, to verify the effects of oral antioxidant administration of pequi-oil on this treatment and to investigate the potential of these treatments for future use as an adjuvant in cancer therapy. Animals received the treatments: (a) filtered water (control); (b) tumor implantation and no treatment (tumor group); (c) tumor implantation followed by intratumoral injection of DexMF and alternating current magnetic field exposure (MHT group) for three consecutive days; (d) oral pequi-oil supplementation followed by tumor implantation and the same treatment as group MHT (PMHT group). Analyses took place 1 and 2 weeks after tumor implantation. Both treatments were effective in increasing the tumor necrosis process and controlling tumor growth, besides keeping lymphocyte-dependent immunity. Although the MHT treatment was more efficient after the first week in reducing DNA damage to blood peripheral leucocytes, PMHT therapy appeared to be more effective with the advance of the carcinogenesis process after the second week. Our findings evidence the potential use of DexMF mediating magnetohyperthermia in cancer treatment and also suggest that the preventive pequi oil administration could increase the efficiency of this process.


Assuntos
Carcinoma de Ehrlich/terapia , Dextranos/química , Hipertermia Induzida/métodos , Magnetoterapia/métodos , Óleos de Plantas/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Carcinoma de Ehrlich/patologia , Linhagem Celular Tumoral , Terapia Combinada/métodos , Estudos de Viabilidade , Resultado do Tratamento
14.
Surg Radiol Anat ; 35(6): 495-502, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23400642

RESUMO

PURPOSE: To compare cone-beam computed tomography (CBCT) and microtomography (micro-CT) for alveolar bone measurements. METHODS: Forty teeth and alveolar bone blocks of five pigs were scanned on a micro-CT with a 9.05 µm pixel size, and on a CBCT device at 0.125 mm voxel size. One height and four thickness measurements were performed twice in standardized slices by two radiologists to verify reliability. Agreement between imaging methods was assessed by correlation coefficients, Bland-Altman plots, and the difference was tested by a Wilcoxon signed-rank test. RESULTS: Regarding intra- and interobserver agreements, all bone measurements presented excellent precision values for micro-CT, but interobserver agreement for CBCT presented good to moderate values. Bone height differed about 0.3 mm, but no statistically significant differences were found for the bone thickness measurements. CONCLUSION: CBCT underestimated bone height. No statistically significant differences were found for bone thickness. Regions of thin bone tissue may not be visualized on CBCT images. There are risks of underestimating bone measurements with CBCT and assuming bone loss that does not exist clinically. Although the difference of the bone height measurement was small, the clinical relevance must be analyzed on how to interpret CBCT.


Assuntos
Processo Alveolar/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Microtomografia por Raio-X/métodos , Perda do Osso Alveolar/diagnóstico por imagem , Animais , Densidade Óssea/fisiologia , Cadáver , Masculino , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA