RESUMO
BACKGROUND: Myocardial perfusion defect (MPD) is common in chronic Chagas cardiomyopathy (CCC) and is associated with inflammation and development of left ventricular systolic dysfunction. We tested the hypothesis that pentoxifylline (PTX) could reduce inflammation and prevent the development of MPD in a model of CCC in hamsters. METHODS AND RESULTS: We investigated with echocardiogram and rest myocardial perfusion scintigraphy at baseline (6-months after T. cruzi infection/saline) and post-treatment (after additional 2-months of PTX/saline administration), female Syrian hamsters assigned to 3 groups: T. cruzi-infected animals treated with PTX (CH + PTX) or saline (CH + SLN); and uninfected control animals (CO). At the baseline, all groups showed similar left ventricular ejection fraction (LVEF) and MPD areas. At post-treatment evaluation, there was a significant increase of MPD in CH + SLN group (0.8 ± 1.6 to 9.4 ± 9.7%), but not in CH + PTX (1.9 ± 3.0% to 2.7 ± 2.7%) that exhibited MPD area similar to CO (0.0 ± 0.0% to 0.0 ± 0.0%). The LVEF decreased in both infected groups. Histological analysis showed a reduced inflammatory infiltrate in CH + PTX group (395.7 ± 88.3 cell/mm2), as compared to CH + SLN (515.1 ± 133.0 cell/mm2), but larger than CO (193.0 ± 25.7 cell/mm2). The fibrosis and TNF-α expression was higher in both infected groups. CONCLUSIONS: The prolonged use of PTX is associated with positive effects, including prevention of MPD development and reduction of inflammation in the chronic hamster model of CCC.
Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Pentoxifilina , Cricetinae , Animais , Feminino , Cardiomiopatia Chagásica/diagnóstico por imagem , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Volume Sistólico , Função Ventricular Esquerda , Tomografia Computadorizada por Raios X , Inflamação , PerfusãoRESUMO
Speckle tracking echocardiography (STE) enables early diagnosis of myocardial damage by evaluating myocardial strain. We aimed to study sequential changes in structural and ventricular functional parameters during Chagas disease (CD) natural history in an animal model. 37 Syrian hamsters were inoculated intraperitoneally with Trypanosoma cruzi (Chagas) and 20 with saline (Control). Echocardiography was performed before the infection (baseline), at 1 month (acute phase), 4, 6, and 8 months (chronic phase) using Vevo 2100 (Fujifilm Inc.) ultrasound system. Left ventricular end-diastolic diameter, Left ventricular end-systolic diameter (LVESD), Left ventricular ejection fraction (LVEF), Global longitudinal (GLS), circumferential (GCS) and radial (GRS) strain were evaluated. Tricuspid annular plane systolic excursion (TAPSE) was used to assess right ventricular function. At 8 months, animals were euthanized and LV myocardial samples were analyzed for quantitation of inflammation and fibrosis. LVEF decreased over time in Chagas group and a difference from Control was detected at 6 months (p-value of groups#time interaction = 0.005). There was a pronounced decrease in GLS, GCS and TAPSE in Chagas group (p-value of groups#time interaction = 0.003 for GLS, < 0.001 for GCS and < 0.009 for TAPSE vs Control) since the first month. LVESD, LVEF and GLS were significantly correlated to the number of inflammatory cells (r = 0.41, p = 0.046; r = - 0.42, p = 0.042; r = 0.41, p = 0.047) but not to fibrosis. In the Syrian hamster model of CD STE parameters (GLS and GCS) showed an early decrease. Changes in LVEF, LVESD, and GLS were correlated to myocardial inflammation but not to fibrosis.
Assuntos
Doença de Chagas , Disfunção Ventricular Esquerda , Animais , Cricetinae , Modelos Animais , Valor Preditivo dos Testes , Volume Sistólico , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia , Função Ventricular EsquerdaRESUMO
BACKGROUND: Myocardial perfusion defects (MPD) due to coronary microvascular dysfunction is frequent in chronic Chagas cardiomyopathy (CCC) and may be involved with development of myocardial damage. We investigated whether MPD precedes left ventricular systolic dysfunction and tested the hypothesis that prolonged use of dipyridamole (DIPY) could reduce MPD in an experimental model of CCC in hamsters. METHODS AND RESULTS: We investigated female hamsters 6-months after T. cruzi infection (baseline condition) and control animals, divided into T. cruzi-infected animals treated with DIPY (CH + DIPY) or placebo (CH + PLB); and uninfected animals treated with DIPY (CO + DIPY) or placebo (CO + PLB). The animals were submitted to echocardiogram and rest SPECT-Sestamibi-Tc99m myocardial perfusion scintigraphy. Next, the animals were treated with DIPY (4 mg/kg bid, intraperitoneal) or saline for 30 days, and reevaluated with the same imaging methods. At baseline, the CH + PLB and CH + DIPY groups showed larger areas of perfusion defect (13.2 ± 13.2% and 17.3 ± 13.2%, respectively) compared with CO + PLB and CO + DIPY (3.8 ± 2.2% e 3.5 ± 2.7%, respectively), P < .05. After treatment, we observed: reduction of perfusion defects only in the CH + DIPY group (17.3 ± 13.2% to 6.8 ± 7.6%, P = .001) and reduction of LVEF in CH + DIPY and CH + PLB groups (from 65.3 ± 9.0% to 53.6 ± 6.9% and from 69.3 ± 5.0% to 54.4 ± 8.6%, respectively, P < .001). Quantitative histology revealed greater extents of inflammation and interstitial fibrosis in both Chagas groups, compared with control group (P < .001), but no difference between Chagas groups (P > .05). CONCLUSIONS: The prolonged use of DIPY in this experimental model of CCC has reduced the rest myocardial perfusion defects, supporting the notion that those areas correspond to viable hypoperfused myocardium.