Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375426

RESUMO

Here, we report work on developing an enzymatic process to improve the functionalities of industrial lignin. A kraft lignin sample prepared from marine pine was treated with the high-redox-potential laccase from the basidiomycete fungus Pycnoporus cinnabarinus at three different concentrations and pH conditions, and with and without the chemical mediator 1-hydroxybenzotriazole (HBT). Laccase activity was tested in the presence and absence of kraft lignin. The optimum pH of PciLac was initially 4.0 in the presence and absence of lignin, but at incubation times over 6 h, higher activities were found at pH 4.5 in the presence of lignin. Structural changes in lignin were investigated by Fourier-transform infrared spectroscopy (FTIR) with differential scanning calorimetry (DSC), and solvent-extractable fractions were analyzed using high-performance size-exclusion chromatography (HPSEC) and gas chromatography-mass spectrometry (GC-MS). The FTIR spectral data were analyzed with two successive multivariate series using principal component analysis (PCA) and ANOVA statistical analysis to identify the best conditions for the largest range of chemical modifications. DSC combined with modulated DSC (MDSC) revealed that the greatest effect on glass transition temperature (Tg) was obtained at 130 U g cm-1 and pH 4.5, with the laccase alone or combined with HBT. HPSEC data suggested that the laccase treatments led to concomitant phenomena of oligomerization and depolymerization, and GC-MS revealed that the reactivity of the extractable phenolic monomers depended on the conditions tested. This study demonstrates that P. cinnabarinus laccase can be used to modify marine pine kraft lignin, and that the set of analytical methods implemented here provides a valuable tool for screening enzymatic treatment conditions.


Assuntos
Lacase , Polyporaceae , Lacase/química , Lignina/química
2.
Polymers (Basel) ; 13(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34833330

RESUMO

Chitosan is a bio-sourced polysaccharide widely used in different fields from health to wastewater treatment through food supplements. Another important use of this polymer is adhesion. Indeed, the current demand to replace non-natural and hazardous polymers by greener ones is well present in the adhesive field and open good opportunities for chitosan and its derivatives. However, chitosan is water soluble and exhibits a poor water-resistance in the field of adhesion which reduces the possibilities of its utilization within the paste field. This review focuses on exploration of different ways available to modify the chitosan and transform it into a water-resistant adhesive. The first part concerns the chitosan itself and gives important information from the discovery of chitin to the pure chitosan ready to use. The second part reviews the background information relative to adhesion theories, ideal properties of adhesives and the characteristics of chitosan as an adhesive. The last part focuses on exploration of the possible modification of chitosan to make it a water-resistant chemical adhesive.

3.
Molecules ; 24(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126129

RESUMO

A chemical modification by grafting alkyl chains using an octanal (C8) on chitosan was conducted with the aim to improve its water resistance for bonding applications. The chemical structure of the modified polymers was determined by NMR analyses revealing two alkylation degrees (10 and 15%). In this study, the flow properties of alkyl-chitosans were also evaluated. An increase in the viscosity was observed in alkyl-chitosan solutions compared with solutions of the same concentration based on native chitosan. Moreover, the evaluation of the adhesive strength (bond strength and shear stress) of both native and alkyl-chitosans was performed on two different double-lap adherends (aluminum and wood). Alkyl-chitosans (10 and 15%) maintain sufficient adhesive properties on wood and exhibit better water resistance compared to native chitosan.


Assuntos
Adesivos/síntese química , Quitosana/química , Adesivos/química , Alquilação , Reologia , Estresse Mecânico , Viscosidade , Água , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA