Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
ACS Chem Biol ; 18(3): 465-475, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36826427

RESUMO

Evidence suggests that ß-(2,6)-levan-type fructooligosaccharides (FOSs) possess higher prebiotic potential and selectivity than their ß-(2,1)-inulin-type counterparts. The focus of the present work was to develop an enzymatic approach for the synthesis of levan-type FOSs, employing levanases (EC 3.2.1.65), specifically those performing endo-hydrolysis on levans. To identify new levanases, a selection of candidates was obtained via in silico exploration of the levanase family biodiversity through a sequence-driven approach. A collection of 113 candidates was screened according to their specific activities on low- and high-molecular-weight (MW) levan as well as thermal stability. The most active levanases were able to hydrolyze both types of levan with similar efficiency. This ultimately revealed 10 active, highly evolutionary distant and diverse candidate levanases, which demonstrated preferential hydrolysis of levan over inulin. The end-product profile differed significantly depending on levanase with levanbiose, levantriose, and levantetraose being the major FOSs. Among them, the catalytic properties of 5 selected potential new levanases (LEV9 from Belliella Baltica, LEV36 from Dyadobacter fermentans, LEV37 from Capnocytophaga ochracea, LEV79 from Vibrio natriegens, LEV91 from Paenarthrobacter aurescens) were characterized, especially in terms of pH and temperature profiles, thermal stability, and kinetic parameters. The identification of these novel levanases is expected to contribute to the production of levan-type FOSs with properties surpassing those of commercial preparations.


Assuntos
Inulina , Oligossacarídeos , Glicosídeo Hidrolases/genética
3.
Chembiochem ; 23(24): e202200595, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36269004

RESUMO

In 2019 four groups reported independently the development of a simplified enzymatic access to the diphosphates (IPP and DMAPP) of isopentenol and dimethylallyl alcohol (IOH and DMAOH). The former are the two universal precursors of all terpenes. We report here on an improved version of what we call the terpene mini-path as well as its use in enzymatic cascades in combination with various transferases. The goal of this study is to demonstrate the in vitro utility of the TMP in, i) synthesizing various natural terpenes, ii) revealing the product selectivity of an unknown terpene synthase, or iii) generating unnatural cyclobutylated terpenes.


Assuntos
Alquil e Aril Transferases , Terpenos , Transferases , Difosfatos
4.
ACS Catal ; 12(1): 66-72, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35036041

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to lactones under very mild reaction conditions. This enzymatic route is hindered by the requirement of a stoichiometric supply of auxiliary substrates for cofactor recycling and difficulties with supplying the necessary oxygen. The recombinant production of BVMO in cyanobacteria allows the substitution of auxiliary organic cosubstrates with water as an electron donor and the utilization of oxygen generated by photosynthetic water splitting. Herein, we report the identification of a BVMO from Burkholderia xenovorans (BVMO Xeno ) that exhibits higher reaction rates in comparison to currently identified BVMOs. We report a 10-fold increase in specific activity in comparison to cyclohexanone monooxygenase (CHMO Acineto ) in Synechocystis sp. PCC 6803 (25 vs 2.3 U gDCW -1 at an optical density of OD750 = 10) and an initial rate of 3.7 ± 0.2 mM h-1. While the cells containing CHMO Acineto showed a considerable reduction of cyclohexanone to cyclohexanol, this unwanted side reaction was almost completely suppressed for BVMO Xeno , which was attributed to the much faster lactone formation and a 10-fold lower K M value of BVMO Xeno toward cyclohexanone. Furthermore, the whole-cell catalyst showed outstanding stereoselectivity. These results show that, despite the self-shading of the cells, high specific activities can be obtained at elevated cell densities and even further increased through manipulation of the photosynthetic electron transport chain (PETC). The obtained rates of up to 3.7 mM h-1 underline the usefulness of oxygenic cyanobacteria as a chassis for enzymatic oxidation reactions. The photosynthetic oxygen evolution can contribute to alleviating the highly problematic oxygen mass-transfer limitation of oxygen-dependent enzymatic processes.

5.
Front Bioeng Biotechnol ; 9: 686362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277586

RESUMO

Despite the success of some nitrilases in industrial applications, there is a constant demand to broaden the catalog of these hydrolases, especially robust ones with high operational stability. By using the criteria of thermoresistance to screen a collection of candidate enzymes heterologously expressed in Escherichia coli, the enzyme Nit phym from the mesophilic organism Paraburkholderia phymatum was selected and further characterized. Its quick and efficient purification by heat treatment is of major interest for large-scale applications. The purified nitrilase displayed a high thermostability with 90% of remaining activity after 2 days at 30°C and a half-life of 18 h at 60°C, together with a broad pH range of 5.5-8.5. Its high resistance to various miscible cosolvents and tolerance to high substrate loadings enabled the quantitative conversion of 65.5 g⋅L-1 of 3-phenylpropionitrile into 3-phenylpropionic acid at 50°C in 8 h at low enzyme loadings of 0.5 g⋅L-1, with an isolated yield of 90%. This study highlights that thermophilic organisms are not the only source of industrially relevant thermostable enzymes and extends the scope of efficient nitrilases for the hydrolysis of a wide range of nitriles, especially trans-cinnamonitrile, terephthalonitrile, cyanopyridines, and 3-phenylpropionitrile.

6.
Biotechnol J ; 16(10): e2100010, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34270173

RESUMO

In recent years, many biocatalytic processes have been developed for the production of chemicals and pharmaceuticals. In this context, enzyme immobilization methods have attracted attention for their advantages, such as continuous production and increased stability. Here, enzyme immobilization methods and a collection of nitrilases from biodiversity for the conversion of 3-cyanopyridine to nicotinic acid were screened. Substrate conversion over 10 conversion cycles was monitored to optimize the process. The best immobilization conditions were found with cross-linking using glutaraldehyde to modify the PMMA beads. This method showed good activity over 10 cycles in a batch reactor at 30 and 40°C. Finally, production with a new thermostable nitrilase was examined in a continuous packed bed reactor, showing very high stability of the biocatalytic process at a flow rate of 0.12 ml min-1 and a temperature of 50°C. The complete conversion of 3-cyanopyridine was obtained over 30 days of operation. Future steps will concern reactor scale-up to increase the production rate with reasonable pressure drops.


Assuntos
Niacina , Aminoidrolases/metabolismo , Biocatálise , Enzimas Imobilizadas
7.
AMB Express ; 9(1): 175, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673806

RESUMO

Flavin-dependent halogenases (FHals) catalyse the halogenation of electron-rich substrates, mainly aromatics. Halogenated compounds have many applications, as pharmaceutical, agrochemicals or as starting materials for the synthesis of complex molecules. By exploring the sequenced bacterial diversity, we discovered and characterized XszenFHal, a novel FHal from Xenorhabdus szentirmaii, a symbiotic bacterium of entomopathogenic nematode. The substrate scope of XszenFHal was examined and revealed activities towards tryptophan, indole and indole derivatives, leading to the formation of the corresponding 5-chloro products. XszenFHal makes a valuable addition to the panel of flavin-dependent halogenases already discovered and enriches the potential for biotechnology applications by allowing access to 5-halogenated indole derivatives.

8.
Biotechnol Bioeng ; 116(11): 2852-2863, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31389000

RESUMO

The efficiency of a versatile in vivo cascade involving a promiscuous alcohol dehydrogenase, obtained from a biodiversity search, and a Baeyer-Villiger monooxygenase was enhanced by the independent control of the production level of each enzyme to produce ε-caprolactone and 3,4-dihydrocoumarin. This goal was achieved by adjusting the copy number per cell of Escherichia coli plasmids. We started from the observation that this number generally correlates with the amount of produced enzyme and demonstrated that an in vivo multi-enzymatic system can be improved by the judicious choice of plasmid, the lower activity of the enzyme that drives the limiting step being counter-balanced by a higher concentration. Using a preconception-free approach to the choice of the plasmid type, we observed positive and negative synergetic effects, sometimes unexpected and depending on the enzyme and plasmid combinations. Experimental optimization of the culture conditions allowed us to obtain the complete conversion of cyclohexanol (16 mM) and 1-indanol (7.5 mM) at a 0.5-L scale. The yield for the conversion of cyclohexanol was 80% (0.7 g ε-caprolactone, for the productivity of 244 mg·L -1 ·h -1 ) and that for 1-indanol 60% (0.3 g 3,4-dihydrocoumarin, for the productivity of 140 mg·L -1 ·h -1 ).


Assuntos
Caproatos/metabolismo , Cumarínicos/metabolismo , Escherichia coli/metabolismo , Lactonas/metabolismo , Engenharia Metabólica , Catálise , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/genética
9.
Front Microbiol ; 10: 1313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281294

RESUMO

The bio-economy relies on microbial strains optimized for efficient large scale production of chemicals and fuels from inexpensive and renewable feedstocks under industrial conditions. The reduced one carbon compound methanol, whose production does not involve carbohydrates needed for the feed and food sector, can be used as sole carbon and energy source by methylotrophic bacteria like Methylobacterium extorquens AM1. This strain has already been engineered to produce various commodity and high value chemicals from methanol. The toxic effect of methanol limits its concentration as feedstock to 1% v/v. We obtained M. extorquens chassis strains tolerant to high methanol via adaptive directed evolution using the GM3 technology of automated continuous culture. Turbidostat and conditional medium swap regimes were employed for the parallel evolution of the recently characterized strain TK 0001 and the reference strain AM1 and enabled the isolation of derivatives of both strains capable of stable growth with 10% methanol. The isolates produced more biomass at 1% methanol than the ancestor strains. Genome sequencing identified the gene metY coding for an O-acetyl-L-homoserine sulfhydrylase as common target of mutation. We showed that the wildtype enzyme uses methanol as substrate at elevated concentrations. This side reaction produces methoxine, a toxic homolog of methionine incorporated in polypeptides during translation. All mutated metY alleles isolated from the evolved populations coded for inactive enzymes, designating O-acetyl-L-homoserine sulfhydrylase as a major vector of methanol toxicity. A whole cell transcriptomic analysis revealed that genes coding for chaperones and proteases were upregulated in the evolved cells as compared with the wildtype, suggesting that the cells had to cope with aberrant proteins formed during the adaptation to increasing methanol exposure. In addition, the expression of ribosomal proteins and enzymes related to energy production from methanol like formate dehydrogenases and ATP synthases was boosted in the evolved cells upon a short-term methanol stress. D-lactate production from methanol by adapted cells overexpressing the native D-lactate dehydrogenase was quantified. A significant higher lactate yield was obtained compared with control cells, indicating an enhanced capacity of the cells resistant to high methanol to assimilate this one carbon feedstock more efficiently.

10.
Chem Commun (Camb) ; 55(52): 7498-7501, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31187106

RESUMO

We explored a collection of 2-deoxyribose-5-phosphate aldolases (DERAs) from biodiversity for their nucleophile substrate promiscuity. The DERAs were screened using as nucleophiles propanone, propanal, cyclobutanone, cyclopentanone, dihydroxyacetone, and glycolaldehyde with l-glyceraldehyde-3-phosphate as an electrophile in aldol addition. A DERA from Arthrobacter chlorophenolicus (DERAArthro) efficiently allowed the synthesis of the corresponding aldol adducts in good yields, displaying complementarity in terms of configuration and substrate specificity with fructose-6-phosphate aldolase, the only previously known aldolase with a large nucleophile tolerance.


Assuntos
Aldeído Liases/metabolismo , Proteínas de Bactérias/metabolismo , Aldeído Liases/genética , Aldeídos/química , Aldeídos/metabolismo , Arthrobacter/enzimologia , Proteínas de Bactérias/genética , Biocatálise , Biodiversidade , Escherichia coli/enzimologia , Gliceraldeído 3-Fosfato/metabolismo , Especificidade por Substrato
11.
Microb Cell Fact ; 18(1): 23, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709396

RESUMO

BACKGROUND: Terpenes are industrially relevant natural compounds the biosynthesis of which relies on two well-established-mevalonic acid (MVA) and methyl erythritol phosphate (MEP)-pathways. Both pathways are widely distributed in all domains of life, the former is predominantly found in eukaryotes and archaea and the latter in eubacteria and chloroplasts. These two pathways supply isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the universal building blocks of terpenes. RESULTS: The potential to establish a semisynthetic third pathway to access these precursors has been investigated in the present work. We have tested the ability of a collection of 93 isopentenyl phosphate kinases (IPK) from the biodiversity to catalyse the double phosphorylation of isopentenol and dimethylallyl alcohol to give, respectively IPP and DMAPP. Five IPKs selected from a preliminary in vitro screening were evaluated in vivo in an engineered chassis E. coli strain producing carotenoids. The recombinant pathway leading to the synthesis of neurosporene and lycopene, allows a simple colorimetric assay to test the potential of IPKs for the synthesis of IPP and DMAPP starting from the corresponding alcohols. The best candidate identified was the IPK from Methanococcoides burtonii (UniProt ID: Q12TH9) which improved carotenoid and neurosporene yields ~ 18-fold and > 45-fold, respectively. In our lab scale conditions, titres of neurosporene reached up to 702.1 ± 44.7 µg/g DCW and 966.2 ± 61.6 µg/L. A scale up to 4 L in-batch cultures reached to 604.8 ± 68.3 µg/g DCW and 430.5 ± 48.6 µg/L without any optimisation shown its potential for future applications. Neurosporene was almost the only carotenoid produced under these conditions, reaching ~ 90% of total carotenoids both at lab and batch scales thus offering an easy access to this sophisticated molecule. CONCLUSION: IPK biodiversity was screened in order to identify IPKs that optimize the final carotenoid content of engineered E. coli cells expressing the lycopene biosynthesis pathway. By simply changing the IPK and without any other metabolic engineering we improved the neurosporene content by more than 45 fold offering a new biosynthetic access to this molecule of upmost importance.


Assuntos
Carotenoides/biossíntese , Engenharia Metabólica/métodos , Terpenos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Biodiversidade , Carotenoides/análise , Eritritol/metabolismo , Escherichia coli/metabolismo , Hemiterpenos/metabolismo , Ácido Mevalônico/metabolismo , Compostos Organofosforados/metabolismo
12.
Appl Microbiol Biotechnol ; 102(13): 5569-5583, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29728726

RESUMO

Most of the "repressor, open reading frame, kinase" (ROK) proteins already characterized so far, and exhibiting a kinase activity, take restrictedly D-glucose as substrate. By exploring the sequenced bacterial diversity, 61 ATP-dependent kinases belonging to the ROK family have been identified and experimentally assayed for the phosphorylation of hexoses. These kinases were mainly found to be thermotolerant and highly active toward D-mannose and D-fructose with notable activities toward D-tagatose. Among them, the ATP-dependent kinase from the mesophile Streptococcus mitis (named ScrKmitis) was biochemically characterized and its substrate spectrum further studied. This enzyme possessed impressive catalytic efficiencies toward D-mannose and D-fructose of 1.5 106 s-1 M-1 and 2.7 105 s-1 M-1, respectively, but also significant ones toward D-tagatose (3.5 102 s-1 M-1) and the unnatural monosaccharides D-altrose (1.1 104 s-1 M-1) and D-talose (3.4 102 s-1 M-1). Specific activities measured for all hexoses showed a high stereopreference for D- over L-series. As proof of concept, 8 hexoses were phosphorylated in moderate to good yields, some of them described for the first time like L-sorbose-5-phosphate unusually phosphorylated in position 5. Its thermotolerance, its wide pH tolerance (from 7 to 10), and temperature range (> 85% activity between 40 and 70 °C) open the way to applications in the enzymatic synthesis of monophosphorylated hexoses.


Assuntos
Frutoquinases/metabolismo , Streptococcus mitis/enzimologia , Fosforilação , Especificidade por Substrato , Açúcares/química , Açúcares/metabolismo , Temperatura
13.
Proc Natl Acad Sci U S A ; 115(19): E4358-E4367, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686076

RESUMO

Trigonelline (TG; N-methylnicotinate) is a ubiquitous osmolyte. Although it is known that it can be degraded, the enzymes and metabolites have not been described so far. In this work, we challenged the laboratory model soil-borne, gram-negative bacterium Acinetobacter baylyi ADP1 (ADP1) for its ability to grow on TG and we identified a cluster of catabolic, transporter, and regulatory genes. We dissected the pathway to the level of enzymes and metabolites, and proceeded to in vitro reconstruction of the complete pathway by six purified proteins. The four enzymatic steps that lead from TG to methylamine and succinate are described, and the structures of previously undescribed metabolites are provided. Unlike many aromatic compounds that undergo hydroxylation prior to ring cleavage, the first step of TG catabolism proceeds through direct cleavage of the C5-C6 bound, catalyzed by a flavin-dependent, two-component oxygenase, which yields (Z)-2-((N-methylformamido)methylene)-5-hydroxy-butyrolactone (MFMB). MFMB is then oxidized into (E)-2-((N-methylformamido) methylene) succinate (MFMS), which is split up by a hydrolase into carbon dioxide, methylamine, formic acid, and succinate semialdehyde (SSA). SSA eventually fuels up the TCA by means of an SSA dehydrogenase, assisted by a Conserved Hypothetical Protein. The cluster is conserved across marine, soil, and plant-associated bacteria. This emphasizes the role of TG as a ubiquitous nutrient for which an efficient microbial catabolic toolbox is available.


Assuntos
Acinetobacter , Alcaloides/metabolismo , Genoma Bacteriano , Anotação de Sequência Molecular , Família Multigênica , Acinetobacter/enzimologia , Acinetobacter/genética , Cromatografia Líquida , Espectrometria de Massas
14.
Angew Chem Int Ed Engl ; 57(19): 5467-5471, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29542859

RESUMO

Dihydroxyacetone phosphate (DHAP)-dependent rhamnulose aldolases display an unprecedented versatility for ketones as electrophile substrates. We selected and characterized a rhamnulose aldolase from Bacteroides thetaiotaomicron (RhuABthet) to provide a proof of concept. DHAP was added as a nucleophile to several α-hydroxylated ketones used as electrophiles. This aldol addition was stereoselective and produced branched-chain monosaccharide adducts with a tertiary alcohol moiety. Several aldols were readily obtained in good to excellent yields (from 76 to 95 %). These results contradict the general view that aldehydes are the only electrophile substrates for DHAP-dependent aldolases and provide a new C-C bond-forming enzyme for stereoselective synthesis of tertiary alcohols.


Assuntos
Aldeído Liases/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Cetonas/metabolismo , Açúcares/metabolismo , Aldeído Liases/química , Bacteroides thetaiotaomicron/enzimologia , Fosfato de Di-Hidroxiacetona/química , Cetonas/química , Estrutura Molecular , Estereoisomerismo , Especificidade por Substrato , Açúcares/química
15.
Nat Commun ; 9(1): 310, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358710

RESUMO

Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology.

16.
Methods Mol Biol ; 1685: 233-245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29086312

RESUMO

Transaminases are efficient tools for the stereoselective conversion of prochiral ketones into valuable chiral amines. Notably, the diversity of naturally occurring α-transaminases offers access to a wide range of L- and D-α-amino acids. We describe here two continuous colorimetric assays for the quantification of transamination activities between a keto acid and a standard donor substrate (L- or D-Glutamic acid or cysteine sulfinic acid). These assays are helpful for kinetic studies as well as for high-throughput screening of enzyme collections.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Transaminases/metabolismo , Colorimetria , Cisteína/análogos & derivados , Cisteína/metabolismo , Ácido Glutâmico/metabolismo , Cetoácidos/metabolismo
18.
Nat Chem Biol ; 13(8): 858-866, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28581482

RESUMO

Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.


Assuntos
Acetiltransferases/metabolismo , Evolução Molecular , Metionina/biossíntese , Acinetobacter/enzimologia , Escherichia coli/enzimologia
19.
Chem Commun (Camb) ; 53(39): 5465-5468, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28466909

RESUMO

Efficient bi-enzymatic cascades combining aldolases and α-transaminases were designed for the synthesis of γ-hydroxy-α-amino acids. These recycling cascades provide high stereoselectivity, atom economy, and an equilibrium shift of the transamination. l-syn or anti-4-hydroxyglutamic acid and d-anti-4,5-dihydroxynorvaline were thus prepared in 83-95% yield in one step from simple substrates.


Assuntos
Aldeído Liases/metabolismo , Aminoácidos/síntese química , Transaminases/metabolismo , Aldeído Liases/química , Estrutura Molecular , Estereoisomerismo , Transaminases/química
20.
mBio ; 7(5)2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27729508

RESUMO

The type VI secretion system (T6SS) is a widespread secretory apparatus produced by Gram-negative bacteria that has emerged as a potent mediator of antibacterial activity during interbacterial interactions. Most Acinetobacter species produce a genetically conserved T6SS, although the expression and functionality of this system vary among different strains. Some pathogenic Acinetobacter baumannii strains activate this secretion system via the spontaneous loss of a plasmid carrying T6SS repressors. In this work, we compared the expression of T6SS-related genes via transcriptome sequencing and differential proteomics in cells with and without the plasmid. This approach, together with the mutational analysis of the T6SS clusters, led to the determination of the genetic components required to elaborate a functional T6SS in the nosocomial pathogen A. baumannii and the nonpathogen A. baylyi By constructing a comprehensive combination of mutants with changes in the T6SS-associated vgrG genes, we delineated their relative contributions to T6SS function. We further determined the importance of two effectors, including an effector-immunity pair, for antibacterial activity. Our genetic analysis led to the identification of an essential membrane-associated structural component named TagX, which we have characterized as a peptidoglycan hydrolase possessing l,d-endopeptidase activity. TagX shows homology to known bacteriophage l,d-endopeptidases and is conserved in the T6SS clusters of several bacterial species. We propose that TagX is the first identified enzyme that fulfills the important role of enabling the transit of T6SS machinery across the peptidoglycan layer of the T6SS-producing bacterium. IMPORTANCE: Acinetobacter baumannii is one of the most troublesome and least investigated multidrug-resistant bacterial pathogens. We have previously shown that A. baumannii employs a T6SS to eliminate competing bacteria. Here we provide a comprehensive analysis of the components of the T6SS of Acinetobacter, and our results provide genetic and functional insights into the Acinetobacter T6SS. Through this analysis, we identified a novel peptidoglycan hydrolase, TagX, that is required for biogenesis of the T6SS apparatus. This is the first peptidoglycanase specialized in T6SS function identified in any species. We propose that this enzyme is required for the spatially and temporally regulated digestion of peptidoglycan to allow assembly of the T6SS machinery.


Assuntos
Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Multimerização Proteica , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Proteoma/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA