Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Biol Chem ; 298(9): 102343, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933017

RESUMO

Proximity-dependent protein labeling provides a powerful in vivo strategy to characterize the interactomes of specific proteins. We previously optimized a proximity labeling protocol for Caenorhabditis elegans using the highly active biotin ligase TurboID. A significant constraint on the sensitivity of TurboID is the presence of abundant endogenously biotinylated proteins that take up bandwidth in the mass spectrometer, notably carboxylases that use biotin as a cofactor. In C. elegans, these comprise POD-2/acetyl-CoA carboxylase alpha, PCCA-1/propionyl-CoA carboxylase alpha, PYC-1/pyruvate carboxylase, and MCCC-1/methylcrotonyl-CoA carboxylase alpha. Here, we developed ways to remove these carboxylases prior to streptavidin purification and mass spectrometry by engineering their corresponding genes to add a C-terminal His10 tag. This allows us to deplete them from C. elegans lysates using immobilized metal affinity chromatography. To demonstrate the method's efficacy, we use it to expand the interactome map of the presynaptic active zone protein ELKS-1. We identify many known active zone proteins, including UNC-10/RIM, SYD-2/liprin-alpha, SAD-1/BRSK1, CLA-1/CLArinet, C16E9.2/Sentryn, as well as previously uncharacterized potentially synaptic proteins such as the ortholog of human angiomotin, F59C12.3 and the uncharacterized protein R148.3. Our approach provides a quick and inexpensive solution to a common contaminant problem in biotin-dependent proximity labeling. The approach may be applicable to other model organisms and will enable deeper and more complete analysis of interactors for proteins of interest.


Assuntos
Biotinilação , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Carboxiliases , Acetil-CoA Carboxilase/metabolismo , Animais , Biotinilação/métodos , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metilmalonil-CoA Descarboxilase/metabolismo , Piruvato Carboxilase/metabolismo , Estreptavidina
3.
PLoS Biol ; 20(6): e3001684, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727855

RESUMO

The ability to detect and respond to acute oxygen (O2) shortages is indispensable to aerobic life. The molecular mechanisms and circuits underlying this capacity are poorly understood. Here, we characterize the behavioral responses of feeding Caenorhabditis elegans to approximately 1% O2. Acute hypoxia triggers a bout of turning maneuvers followed by a persistent switch to rapid forward movement as animals seek to avoid and escape hypoxia. While the behavioral responses to 1% O2 closely resemble those evoked by 21% O2, they have distinct molecular and circuit underpinnings. Disrupting phosphodiesterases (PDEs), specific G proteins, or BBSome function inhibits escape from 1% O2 due to increased cGMP signaling. A primary source of cGMP is GCY-28, the ortholog of the atrial natriuretic peptide (ANP) receptor. cGMP activates the protein kinase G EGL-4 and enhances neuroendocrine secretion to inhibit acute responses to 1% O2. Triggering a rise in cGMP optogenetically in multiple neurons, including AIA interneurons, rapidly and reversibly inhibits escape from 1% O2. Ca2+ imaging reveals that a 7% to 1% O2 stimulus evokes a Ca2+ decrease in several neurons. Defects in mitochondrial complex I (MCI) and mitochondrial complex I (MCIII), which lead to persistently high reactive oxygen species (ROS), abrogate acute hypoxia responses. In particular, repressing the expression of isp-1, which encodes the iron sulfur protein of MCIII, inhibits escape from 1% O2 without affecting responses to 21% O2. Both genetic and pharmacological up-regulation of mitochondrial ROS increase cGMP levels, which contribute to the reduced hypoxia responses. Our results implicate ROS and precise regulation of intracellular cGMP in the modulation of acute responses to hypoxia by C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Hipóxia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Elife ; 112022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35201977

RESUMO

Animals that lose one sensory modality often show augmented responses to other sensory inputs. The mechanisms underpinning this cross-modal plasticity are poorly understood. We probe such mechanisms by performing a forward genetic screen for mutants with enhanced O2 perception in Caenorhabditis elegans. Multiple mutants exhibiting increased O2 responsiveness concomitantly show defects in other sensory responses. One mutant, qui-1, defective in a conserved NACHT/WD40 protein, abolishes pheromone-evoked Ca2+ responses in the ADL pheromone-sensing neurons. At the same time, ADL responsiveness to pre-synaptic input from O2-sensing neurons is heightened in qui-1, and other sensory defective mutants, resulting in enhanced neurosecretion although not increased Ca2+ responses. Expressing qui-1 selectively in ADL rescues both the qui-1 ADL neurosecretory phenotype and enhanced escape from 21% O2. Profiling ADL neurons in qui-1 mutants highlights extensive changes in gene expression, notably of many neuropeptide receptors. We show that elevated ADL expression of the conserved neuropeptide receptor NPR-22 is necessary for enhanced ADL neurosecretion in qui-1 mutants, and is sufficient to confer increased ADL neurosecretion in control animals. Sensory loss can thus confer cross-modal plasticity by changing the peptidergic connectome.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Testes Genéticos/métodos , Mutação , Neuropeptídeos/metabolismo , Oxigênio/metabolismo , Percepção , Feromônios/metabolismo , Transdução de Sinais
5.
PLoS Biol ; 19(11): e3001431, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723964

RESUMO

To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell autonomous. We have discovered that, in Caenorhabditis elegans, neuronal heat shock factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR), causes extensive fat remodeling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine and a global shift in the saturation levels of plasma membrane's phospholipids. The observed remodeling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least 6 TAX-2/TAX-4 cyclic guanosine monophosphate (cGMP) gated channel expressing sensory neurons, and transforming growth factor ß (TGF-ß)/bone morphogenetic protein (BMP) are required for signaling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodeling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell nonautonomously coordinate membrane saturation and composition across tissues in a multicellular animal.


Assuntos
Adaptação Fisiológica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Temperatura Alta , Lipídeos/química , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Temperatura Baixa , GMP Cíclico/metabolismo , Glicerofosfolipídeos/metabolismo , Fenótipo , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo
6.
Elife ; 102021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499028

RESUMO

The ubiquitous Ca2+ sensor calmodulin (CaM) binds and regulates many proteins, including ion channels, CaM kinases, and calcineurin, according to Ca2+-CaM levels. What regulates neuronal CaM levels, is, however, unclear. CaM-binding transcription activators (CAMTAs) are ancient proteins expressed broadly in nervous systems and whose loss confers pleiotropic behavioral defects in flies, mice, and humans. Using Caenorhabditis elegans and Drosophila, we show that CAMTAs control neuronal CaM levels. The behavioral and neuronal Ca2+ signaling defects in mutants lacking camt-1, the sole C. elegans CAMTA, can be rescued by supplementing neuronal CaM. CAMT-1 binds multiple sites in the CaM promoter and deleting these sites phenocopies camt-1. Our data suggest CAMTAs mediate a conserved and general mechanism that controls neuronal CaM levels, thereby regulating Ca2+ signaling, physiology, and behavior.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Edição de Genes , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Ligação Proteica , Transdução de Sinais , Transativadores/genética , Transcriptoma
7.
J Biol Chem ; 297(3): 101094, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34416233

RESUMO

Proximity labeling provides a powerful in vivo tool to characterize the proteome of subcellular structures and the interactome of specific proteins. The nematode Caenorhabditis elegans is one of the most intensely studied organisms in biology, offering many advantages for biochemistry. Using the highly active biotin ligase TurboID, we optimize here a proximity labeling protocol for C. elegans. An advantage of TurboID is that biotin's high affinity for streptavidin means biotin-labeled proteins can be affinity-purified under harsh denaturing conditions. By combining extensive sonication with aggressive denaturation using SDS and urea, we achieved near-complete solubilization of worm proteins. We then used this protocol to characterize the proteomes of the worm gut, muscle, skin, and nervous system. Neurons are among the smallest C. elegans cells. To probe the method's sensitivity, we expressed TurboID exclusively in the two AFD neurons and showed that the protocol could identify known and previously unknown proteins expressed selectively in AFD. The active zones of synapses are composed of a protein matrix that is difficult to solubilize and purify. To test if our protocol could solubilize active zone proteins, we knocked TurboID into the endogenous elks-1 gene, which encodes a presynaptic active zone protein. We identified many known ELKS-1-interacting active zone proteins, as well as previously uncharacterized synaptic proteins. Versatile vectors and the inherent advantages of using C. elegans, including fast growth and the ability to rapidly make and functionally test knock-ins, make proximity labeling a valuable addition to the armory of this model organism.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Coloração e Rotulagem/métodos , Animais , Biotina/química , Biotinilação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteoma/metabolismo , Sinapses/metabolismo
9.
Nat Commun ; 11(1): 2099, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350248

RESUMO

Besides pro-inflammatory roles, the ancient cytokine interleukin-17 (IL-17) modulates neural circuit function. We investigate IL-17 signaling in neurons, and the extent it can alter organismal phenotypes. We combine immunoprecipitation and mass spectrometry to biochemically characterize endogenous signaling complexes that function downstream of IL-17 receptors in C. elegans neurons. We identify the paracaspase MALT-1 as a critical output of the pathway. MALT1 mediates signaling from many immune receptors in mammals, but was not previously implicated in IL-17 signaling or nervous system function. C. elegans MALT-1 forms a complex with homologs of Act1 and IRAK and appears to function both as a scaffold and a protease. MALT-1 is expressed broadly in the C. elegans nervous system, and neuronal IL-17-MALT-1 signaling regulates multiple phenotypes, including escape behavior, associative learning, immunity and longevity. Our data suggest MALT1 has an ancient role modulating neural circuit function downstream of IL-17 to remodel physiology and behavior.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/fisiologia , Imunidade , Interleucina-17/metabolismo , Longevidade , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Neurônios/metabolismo , Animais , Comportamento Animal , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Imunidade/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Longevidade/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transgenes
10.
Dev Biol ; 461(1): 66-74, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945343

RESUMO

Neuronal activity often leads to alterations in gene expression and cellular architecture. The nematode Caenorhabditis elegans, owing to its compact translucent nervous system, is a powerful system in which to study conserved aspects of the development and plasticity of neuronal morphology. Here we focus on one pair of sensory neurons, termed URX, which the worm uses to sense and avoid high levels of environmental oxygen. Previous studies have reported that the URX neuron pair has variable branched endings at its dendritic sensory tip. By controlling oxygen levels and analyzing mutants, we found that these microtubule-rich branched endings grow over time as a consequence of neuronal activity in adulthood. We also find that the growth of these branches correlates with an increase in cellular sensitivity to particular ranges of oxygen that is observable in the behavior of older worms. Given the strengths of C. elegans as a model organism, URX may serve as a potent system for uncovering genes and mechanisms involved in activity-dependent morphological changes in neurons and possible adaptive changes in the aging nervous system.


Assuntos
Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo , Células Receptoras Sensoriais/fisiologia , Envelhecimento/fisiologia , Anaerobiose/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Plasticidade Celular/fisiologia , Dendritos/fisiologia , Oxigênio/metabolismo , Células Receptoras Sensoriais/citologia
11.
Neuron ; 105(1): 106-121.e10, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31757604

RESUMO

The extent to which behavior is shaped by experience varies between individuals. Genetic differences contribute to this variation, but the neural mechanisms are not understood. Here, we dissect natural variation in the behavioral flexibility of two Caenorhabditis elegans wild strains. In one strain, a memory of exposure to 21% O2 suppresses CO2-evoked locomotory arousal; in the other, CO2 evokes arousal regardless of previous O2 experience. We map that variation to a polymorphic dendritic scaffold protein, ARCP-1, expressed in sensory neurons. ARCP-1 binds the Ca2+-dependent phosphodiesterase PDE-1 and co-localizes PDE-1 with molecular sensors for CO2 at dendritic ends. Reducing ARCP-1 or PDE-1 activity promotes CO2 escape by altering neuropeptide expression in the BAG CO2 sensors. Variation in ARCP-1 alters behavioral plasticity in multiple paradigms. Our findings are reminiscent of genetic accommodation, an evolutionary process by which phenotypic flexibility in response to environmental variation is reset by genetic change.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Plasticidade Neuronal/fisiologia , Neuropeptídeos/biossíntese , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Nível de Alerta/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Dióxido de Carbono/farmacologia , Feminino , Individualidade , Diester Fosfórico Hidrolases/metabolismo , Polimorfismo Genético , Células Receptoras Sensoriais/metabolismo , Especificidade da Espécie
12.
G3 (Bethesda) ; 9(11): 3703-3714, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31519744

RESUMO

The BH3-only family of proteins is key for initiating apoptosis in a variety of contexts, and may also contribute to non-apoptotic cellular processes. Historically, the nematode Caenorhabditis elegans has provided a powerful system for studying and identifying conserved regulators of BH3-only proteins. In C. elegans, the BH3-only protein egl-1 is expressed during development to cell-autonomously trigger most developmental cell deaths. Here we provide evidence that egl-1 is also transcribed after development in the sensory neuron pair URX without inducing apoptosis. We used genetic screening and epistasis analysis to determine that its transcription is regulated in URX by neuronal activity and/or in parallel by orthologs of Protein Kinase G and the Salt-Inducible Kinase family. Because several BH3-only family proteins are also expressed in the adult nervous system of mammals, we suggest that studying egl-1 expression in URX may shed light on mechanisms that regulate conserved family members in higher organisms.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Repressoras/genética , Células Receptoras Sensoriais/metabolismo , Animais , Bioensaio , Caenorhabditis elegans/crescimento & desenvolvimento , Dendritos , Longevidade , Pseudomonas aeruginosa
13.
PLoS One ; 14(5): e0217746, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150491

RESUMO

Although the aggregation of the amyloid-ß peptide (Aß) into amyloid fibrils is a well-established hallmark of Alzheimer's disease, the complex mechanisms linking this process to neurodegeneration are still incompletely understood. The nematode worm C. elegans is a valuable model organism through which to study these mechanisms because of its simple nervous system and its relatively short lifespan. Standard Aß-based C. elegans models of Alzheimer's disease are designed to study the toxic effects of the overexpression of Aß in the muscle or nervous systems. However, the wide variety of effects associated with the tissue-level overexpression of Aß makes it difficult to single out and study specific cellular mechanisms related to the onset of Alzheimer's disease. Here, to better understand how to investigate the early events affecting neuronal signalling, we created a C. elegans model expressing Aß42, the 42-residue form of Aß, from a single-copy gene insertion in just one pair of glutamatergic sensory neurons, the BAG neurons. In behavioural assays, we found that the Aß42-expressing animals displayed a subtle modulation of the response to CO2, compared to controls. Ca2+ imaging revealed that the BAG neurons in young Aß42-expressing nematodes were activated more strongly than in control animals, and that neuronal activation remained intact until old age. Taken together, our results suggest that Aß42-expression in this very subtle model of AD is sufficient to modulate the behavioural response but not strong enough to generate significant neurotoxicity, suggesting that slightly more aggressive perturbations will enable effectively studies of the links between the modulation of a physiological response and its associated neurotoxicity.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Fragmentos de Peptídeos/genética , Células Receptoras Sensoriais/metabolismo , Doença de Alzheimer/patologia , Amiloide , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Células Receptoras Sensoriais/patologia
14.
Proc Natl Acad Sci U S A ; 115(29): E6890-E6899, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29959203

RESUMO

Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Unlike synaptic vesicles, which can be recycled and refilled close to release sites, DCVs must be replenished by de novo synthesis in the cell body. Here, we dissect DCV cell biology in vivo in a Caenorhabditis elegans sensory neuron whose tonic activity we can control using a natural stimulus. We express fluorescently tagged neuropeptides in the neuron and define parameters that describe their subcellular distribution. We measure these parameters at high and low neural activity in 187 mutants defective in proteins implicated in membrane traffic, neuroendocrine secretion, and neuronal or synaptic activity. Using unsupervised hierarchical clustering methods, we analyze these data and identify 62 groups of genes with similar mutant phenotypes. We explore the function of a subset of these groups. We recapitulate many previous findings, validating our paradigm. We uncover a large battery of proteins involved in recycling DCV membrane proteins, something hitherto poorly explored. We show that the unfolded protein response promotes DCV production, which may contribute to intertissue communication of stress. We also find evidence that different mechanisms of priming and exocytosis may operate at high and low neural activity. Our work provides a defined framework to study DCV biology at different neural activity levels.


Assuntos
Caenorhabditis elegans , Mutação , Neuropeptídeos , Vesículas Secretórias , Células Receptoras Sensoriais/metabolismo , Vesículas Sinápticas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
15.
PLoS Genet ; 14(6): e1007435, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879119

RESUMO

Neurons develop elaborate morphologies that provide a model for understanding cellular architecture. By studying C. elegans sensory dendrites, we previously identified genes that act to promote the extension of ciliated sensory dendrites during embryogenesis. Interestingly, the nonciliated dendrite of the oxygen-sensing neuron URX is not affected by these genes, suggesting it develops through a distinct mechanism. Here, we use a visual forward genetic screen to identify mutants that affect URX dendrite morphogenesis. We find that disruption of the MAP kinase MAPK-15 or the ßH-spectrin SMA-1 causes a phenotype opposite to what we had seen before: dendrites extend normally during embryogenesis but begin to overgrow as the animals reach adulthood, ultimately extending up to 150% of their normal length. SMA-1 is broadly expressed and acts non-cell-autonomously, while MAPK-15 is expressed in many sensory neurons including URX and acts cell-autonomously. MAPK-15 acts at the time of overgrowth, localizes at the dendrite ending, and requires its kinase activity, suggesting it acts locally in time and space to constrain dendrite growth. Finally, we find that the oxygen-sensing guanylate cyclase GCY-35, which normally localizes at the dendrite ending, is localized throughout the overgrown region, and that overgrowth can be suppressed by overexpressing GCY-35 or by genetically mimicking elevated cGMP signaling. These results suggest that overgrowth may correspond to expansion of a sensory compartment at the dendrite ending, reminiscent of the remodeling of sensory cilia or dendritic spines. Thus, in contrast to established pathways that promote dendrite growth during early development, our results reveal a distinct mechanism that constrains dendrite growth throughout the life of the animal, possibly by controlling the size of a sensory compartment at the dendrite ending.


Assuntos
Caenorhabditis elegans/fisiologia , Dendritos/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Neurogênese , Células Receptoras Sensoriais/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/fisiologia , GMP Cíclico/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Oxigênio/metabolismo , Transdução de Sinais
16.
Bio Protoc ; 7(15)2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29075655

RESUMO

This protocol describes a method for purifying glycosylated FLAG-tagged secreted proteins with disulfide bonds from mammalian cells. The purified products can be used for various applications, such as ligand binding assays.

17.
Proc Natl Acad Sci U S A ; 114(23): E4658-E4665, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28536200

RESUMO

Sensory receptor neurons match their dynamic range to ecologically relevant stimulus intensities. How this tuning is achieved is poorly understood in most receptors. The roundworm Caenorhabditis elegans avoids 21% O2 and hypoxia and prefers intermediate O2 concentrations. We show how this O2 preference is sculpted by the antagonistic action of a neuroglobin and an O2-binding soluble guanylate cyclase. These putative molecular O2 sensors confer a sigmoidal O2 response curve in the URX neurons that has highest slope between 15 and 19% O2 and approaches saturation when O2 reaches 21%. In the absence of the neuroglobin, the response curve is shifted to lower O2 values and approaches saturation at 14% O2 In behavioral terms, neuroglobin signaling broadens the O2 preference of Caenorhabditis elegans while maintaining avoidance of 21% O2 A computational model of aerotaxis suggests the relationship between GLB-5-modulated URX responses and reversal behavior is sufficient to broaden O2 preference. In summary, we show that a neuroglobin can shift neural information coding leading to altered behavior. Antagonistically acting molecular sensors may represent a common mechanism to sharpen tuning of sensory neurons.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Globinas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , GMP Cíclico/metabolismo , Genes de Helmintos , Globinas/genética , Guanilato Ciclase/metabolismo , Modelos Neurológicos , Mutação , Proteínas do Tecido Nervoso/genética , Neuroglobina , Oxigênio/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 114(16): 4195-4200, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373553

RESUMO

Animals adjust their behavioral priorities according to momentary needs and prior experience. We show that Caenorhabditis elegans changes how it processes sensory information according to the oxygen environment it experienced recently. C. elegans acclimated to 7% O2 are aroused by CO2 and repelled by pheromones that attract animals acclimated to 21% O2 This behavioral plasticity arises from prolonged activity differences in a circuit that continuously signals O2 levels. A sustained change in the activity of O2-sensing neurons reprograms the properties of their postsynaptic partners, the RMG hub interneurons. RMG is gap-junctionally coupled to the ASK and ADL pheromone sensors that respectively drive pheromone attraction and repulsion. Prior O2 experience has opposite effects on the pheromone responsiveness of these neurons. These circuit changes provide a physiological correlate of altered pheromone valence. Our results suggest C. elegans stores a memory of recent O2 experience in the RMG circuit and illustrate how a circuit is flexibly sculpted to guide behavioral decisions in a context-dependent manner.


Assuntos
Animais Geneticamente Modificados/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Memória/fisiologia , Neurônios/efeitos dos fármacos , Oxigênio/metabolismo , Feromônios/farmacologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Neurônios/citologia , Neurônios/fisiologia , Sensação/efeitos dos fármacos , Transdução de Sinais
19.
Nature ; 542(7639): 43-48, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28099418

RESUMO

Interleukin-17 (IL-17) is a major pro-inflammatory cytokine: it mediates responses to pathogens or tissue damage, and drives autoimmune diseases. Little is known about its role in the nervous system. Here we show that IL-17 has neuromodulator-like properties in Caenorhabditis elegans. IL-17 can act directly on neurons to alter their response properties and contribution to behaviour. Using unbiased genetic screens, we delineate an IL-17 signalling pathway and show that it acts in the RMG hub interneurons. Disrupting IL-17 signalling reduces RMG responsiveness to input from oxygen sensors, and renders sustained escape from 21% oxygen transient and contingent on additional stimuli. Over-activating IL-17 receptors abnormally heightens responses to 21% oxygen in RMG neurons and whole animals. IL-17 deficiency can be bypassed by optogenetic stimulation of RMG. Inducing IL-17 expression in adults can rescue mutant defects within 6 h. These findings reveal a non-immunological role of IL-17 modulating circuit function and behaviour.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Interleucina-17/metabolismo , Sensação/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Caenorhabditis elegans/efeitos dos fármacos , Células HEK293 , Humanos , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Oxigênio/metabolismo , Oxigênio/farmacologia , Receptores de Interleucina-17/metabolismo , Sensação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 112(27): E3525-34, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100886

RESUMO

Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called "BAG," "AFD," and "ASE" that respond to CO2 stimuli. Using in vivo Ca(2+) imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca(2+). In contrast, glial sheath cells harboring the sensory endings of C. elegans' major chemosensory neurons exhibit strong and sustained decreases in Ca(2+) in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.


Assuntos
Caenorhabditis elegans/fisiologia , Dióxido de Carbono/metabolismo , Nervo Olfatório/fisiologia , Oviposição/fisiologia , Células Receptoras Sensoriais/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , GMP Cíclico/metabolismo , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Atividade Motora/genética , Atividade Motora/fisiologia , Mutação , Nervo Olfatório/citologia , Nervo Olfatório/metabolismo , Oviposição/genética , Células Receptoras Sensoriais/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA