RESUMO
Triacylglycerols (TAGs), a major lipid class in foods and the human body, consist of three fatty acids esterified to a glycerol backbone. They can occur in various isomeric forms, including sn-positional, cis/trans configurational, acyl chain length, double bond positional, and mixed type isomers. Separating isomeric mixtures is of great interest as different isomers can have distinct influence on mechanisms, such as digestibility, oxidative stability, or lipid metabolism. However, TAG isomer separation remains challenging with established analytical methodologies such as liquid-chromatography coupled to mass spectrometry (LC-MS). In this study, we developed a method with cyclic ion mobility mass spectrometry (cIMS-MS) for the separation and identification of all types of TAG isomers. First, the influence of different adducts (Li+, NH4+, Na+, and K+) on the separation was studied. Overall, it was concluded that the sodium adduct is the best choice to efficiently separate all types of TAG isomers. In addition, trends were found in the influence of specific structural features on the drift time order. An order of relative influence (from high to low) was established; (1) degree of unsaturation of the fatty acid(s) on an exterior position (if the total degree of unsaturation(s) is equal in both TAGs), (2) acyl chain length on the exterior positions, (3) cis/trans configuration, and (4) double bond (DB)-position. Finally, various cIMS-MS strategies were developed for the separation of mixtures containing four, five, and six isomers. To conclude, the developed methods can be used for separation of complex mixtures of TAG isomers and have great potential to be expanded to isomers of similar types of lipids such as di- and monoacylglycerols. This study also shows the potential of cIMS-MS to be used for the application on real TAG samples.
Assuntos
Espectrometria de Massas , Triglicerídeos , Triglicerídeos/química , Triglicerídeos/análise , Triglicerídeos/isolamento & purificação , Isomerismo , Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodosRESUMO
Although noncovalent interactions and covalent reactions between phenolic compounds and proteins have been investigated across diverse scientific disciplines, a comprehensive understanding and identification of their products remain elusive. This review will initially outline the chemical framework and, subsequently, delve into unresolved or debated chemical and functional food-related implications, as well as forthcoming challenges in this topic. The primary objective is to elucidate the multiple aspects of protein-phenolic interactions and reactions, along with the underlying overwhelming dynamics and possibilities of follow-up reactions and potential crosslinking between proteins and phenolic compounds. The resulting products are challenging to identify and characterize analytically, as interactions and reactions occur concurrently, mutually influencing each other. Moreover, they are being modulated by various conditions such as the reaction parameters and, obviously, the chemical structure. Additionally, this review delineates the resulting discrepancies and challenges of properties and attributes such as color, taste, foaming, emulsion and gel formation, as well as effects on protein digestibility and allergenicity. Ultimately, this review is an opinion paper of a group of experts, dealing with these challenges for quite a while and aiming at equipping researchers with a critical and systematic approach to address current research gaps concerning protein-phenolic interactions and reactions.
Assuntos
Fenóis , Proteínas , Proteínas/química , Fenóis/química , Alimento FuncionalRESUMO
Dimethylallyl tryptophan synthases (DMATSs) are aromatic prenyltransferases that catalyze the transfer of a prenyl moiety from a donor to an aromatic acceptor during the biosynthesis of microbial secondary metabolites. Due to their broad substrate scope, DMATSs are anticipated as biotechnological tools for producing bioactive prenylated aromatic compounds. Our study explored the substrate scope and product profile of a recombinant RePT, a novel DMATS from the thermophilic fungus Rasamsonia emersonii. Among a variety of aromatic substrates, RePT showed the highest substrate conversion for L-tryptophan and L-tyrosine (> 90%), yielding two mono-prenylated products in both cases. Nine phenolics from diverse phenolic subclasses were notably converted (> 10%), of which the stilbenes oxyresveratrol, piceatannol, pinostilbene, and resveratrol were the best acceptors (37-55% conversion). The position of prenylation was determined using NMR spectroscopy or annotated using MS2 fragmentation patterns, demonstrating that RePT mainly catalyzed mono-O-prenylation on the hydroxylated aromatic substrates. On L-tryptophan, a non-hydroxylated substrate, it preferentially catalyzed C7 prenylation with reverse N1 prenylation as a secondary reaction. Moreover, RePT also possessed substrate-dependent organic solvent tolerance in the presence of 20% (v/v) methanol or DMSO, where a significant conversion (> 90%) was maintained. Our study demonstrates the potential of RePT as a biocatalyst for the production of bioactive prenylated aromatic amino acids, stilbenes, and various phenolic compounds. KEY POINTS: ⢠RePT catalyzes prenylation of diverse aromatic substrates. ⢠RePT enables O-prenylation of phenolics, especially stilbenes. ⢠The novel RePT remains active in 20% methanol or DMSO.
Assuntos
Aminoácidos Aromáticos , Dimetilaliltranstransferase , Fenóis , Prenilação , Aminoácidos Aromáticos/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Fenóis/metabolismo , Especificidade por Substrato , Estilbenos/metabolismo , Triptofano/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genéticaRESUMO
To aid valorisation of beer brewing by-products, more insight into their composition is essential. We have analysed the phenolic compound composition of four brewing by-products, namely barley rootlets, spent grain, hot trub, and cold trub. The main phenolics detected were hydroxycinnamoylagmatines and dimers thereof. Barley rootlets contained the highest hydroxycinnamoylagmatine content and cold trub the highest dimer content. Additionally, variations in (dimeric) hydroxycinnamoylagmatine composition and content were observed in fourteen barley rootlet samples. The most abundant compound in all rootlets was the glycosylated 4-O-7'/3-8'-linked heterodimer of coumaroylagmatine and feruloylagmatine, i.e. CouAgm-4-O-7'/3-8'-(4'Hex)-DFerAgm. Structures of glycosylated and hydroxylated derivatives of coumaroylagmatine were elucidated by NMR spectroscopy after their purification from a rootlet extract. An MS-based decision tree was developed, which aids in identifying hydroxycinnamoylagmatine dimers in complex mixtures. In conclusion, this study shows that the diversity of phenolamides and (neo)lignanamides in barley-derived by-products is larger than previously reported.
Assuntos
Cerveja , Hordeum , Hordeum/química , Cerveja/análise , Dimerização , Resíduos/análise , Fenóis/química , Fenóis/análise , Ácidos Cumáricos/química , Ácidos Cumáricos/análise , Estrutura MolecularRESUMO
To understand the mode of action of bioactive oligosaccharides, such as prebiotics, in-depth knowledge about all structural features, including monosaccharide composition, linkage type, and anomeric configuration, is necessary. Current analytical techniques provide limited information about structural features within complex mixtures unless preceded by extensive purification. In this study, we propose an approach employing cyclic ion mobility spectrometry (cIMS) for the in-depth characterization of oligosaccharides, here demonstrated for disaccharides. We were able to separate galactose and glucose anomers by exploiting the high ion mobility resolution of cIMS. Using the obtained monosaccharide mobilograms as references, we determined the composition and anomeric configuration of 4ß-galactobiose by studying the monosaccharide fragments generated by collision-induced dissociation (CID) before the ion mobility separation. Drift times and individual MS2 spectra of partially resolved reducing-end anomers of 4ß-galactobiose, 4ß-galactosylglucose (lactose), and 4ß-glucosylglucose (cellobiose) were obtained by deconvolution using CID fragmentation induced in the transfer region between the cIMS cell and TOF analyzer. The composition and anomeric configuration of the reducing end anomers of these disaccharides were identified using cIMS2 approaches, where first each anomer was isolated using cIMS and individually fragmented, and the monosaccharide fragments were again separated by cIMS for comparison with monosaccharide standards. With these results we demonstrate the promising application of cIMS for the structural characterization of isomeric oligosaccharides.
Assuntos
Dissacarídeos , Espectrometria de Mobilidade Iônica , Monossacarídeos , Espectrometria de Mobilidade Iônica/métodos , Dissacarídeos/química , Monossacarídeos/química , Configuração de CarboidratosRESUMO
Dimers of hydroxycinnamoylagmatines are phenolic compounds found in barley and beer. Although they are bioactive and sensory-active compounds, systematic reports on their structure-property relationships are missing. This is partly due to lack of protocols to obtain a diverse set of hydroxycinnamoylagmatine homo- and heterodimers. To better understand dimer formation in complex systems, combinations of the monomers coumaroylagmatine (CouAgm), feruloylagmatine (FerAgm), and sinapoylagmatine (SinAgm) were incubated with horseradish peroxidase. For all combinations, the main oxidative coupling products were homodimers. Additionally, minor amounts of heterodimers were formed, except for the combination of FerAgm and CouAgm. Oxidative coupling was also performed with laccases from Agaricus bisporus and Trametes versicolor, resulting in formation of the same coupling products and no formation of CouAgm-FerAgm heterodimers. Our protocol for oxidative coupling combinations of hydroxycinnamoylagmatines yielded a structurally diverse set of coupling products, facilitating production of dimers for future research on their structure-property relationships.
Assuntos
Hordeum , Hordeum/metabolismo , Trametes/metabolismo , Oxirredução , Fenóis , Estresse Oxidativo , Lacase/metabolismoRESUMO
This Comment critically addresses the article by Gao et al. (Gao, K., et al. J. Agric. Food Chem. 2015, 63, 1067-1075), providing the structural elucidation of three phenolamide dimers (neolignanamides) from the fruits of Lycium barbarum. A more recent article published by Chen et al. (Chen, H., et al. J. Agric. Food Chem. 2023, 71, 11080-11093) incorporates these structures into further research on the bioactivity of these compounds. Although the analytical techniques used by Gao et al. are adequate, in our opinion, the nuclear magnetic resonance (NMR) spectroscopic data have not been interpreted correctly, resulting in incorrect structures for three neolignanamides from the fruits of L. barbarum. In this Comment, an alternative interpretation of the NMR spectroscopic data and the corresponding structures are proposed. The proposed structures feature linkage types that are much more common for neolignanamides than the linkage types in the originally reported structures of these compounds.
Assuntos
Antioxidantes , Lycium , Antioxidantes/química , Lycium/química , Amidas , Frutas/química , Fenóis/químicaRESUMO
In iron-fortified bouillon, reactivity of the iron ion with (acylated) flavone glycosides from herbs can affect product color and bioavailability of iron. This study investigates the influence of 7-O-glycosylation and additional 6â³-O-acetylation or 6â³-O-malonylation of flavones on their interaction with iron. Nine (6â³-O-acylated) flavone 7-O-apiosylglucosides were purified from celery (Apium graveolens), and their structures were elucidated by mass spectrometry (MS) and nuclear magnetic resonance (NMR). In the presence of iron, a bathochromic shift and darker color were observed for the 7-O-apiosylglucosides compared to the aglycon of flavones that only possess the 4-5 site. Thus, the ability of iron to coordinate to the flavone 4-5 site is increased by 7-O-glycosylation. For flavones with an additional 3'-4' site, less discoloration was observed for the 7-O-apiosylglucoside compared to the aglycon. Additional 6â³-O-acylation did not affect the color. These findings indicate that model systems used to study discoloration in iron-fortified foods should also comprise (acylated) glycosides of flavonoids.
RESUMO
Auto-oxidation of flavan-3-ols leads to browning and consequently loss of product quality during storage of ready-to-drink (RTD) green tea. The mechanisms and products of auto-oxidation of galloylated catechins, the major flavan-3-ols in green tea, are still largely unknown. Therefore, we investigated auto-oxidation of epicatechin gallate (ECg) in aqueous model systems. Oxidation products tentatively identified based on MS included δ- or γ-type dehydrodicatechins (DhC2s) as the main contributors to browning. Additionally, various colourless products were detected, including epicatechin (EC) and gallic acid (GA) from degalloylation, ether-linked ε-type DhC2s, and 6 new coupling products of ECg and GA possessing a lactone interflavanic linkage. Supported by density function theory (DFT) calculations, we provide a mechanistic explanation on how presence of gallate moieties (D-ring) and GA affect the reaction pathway. Overall, presence of gallate moieties and GA resulted in a different product profile and less intense auto-oxidative browning of ECg compared to EC.
Assuntos
Catequina , Catequina/análise , Ácido Gálico , Chá/metabolismo , Estresse OxidativoRESUMO
Analytical techniques, such as liquid chromatography coupled to mass spectrometry (LC-MS) or nuclear magnetic resonance (NMR), are widely used for characterization of complex mixtures of (isomeric) proteins, carbohydrates, lipids, and phytochemicals in food. Food can contain isomers that are challenging to separate, but can possess different reactivity and bioactivity. Catechins are the main phenolic compounds in tea; they can be present as various stereoisomers, which differ in their chemical properties. Currently, there is a lack of fast and direct methods to monitor interconversion and individual reactivity of these epimers (e.g. epicatechin (EC) and catechin (C)). In this study, cyclic ion mobility mass spectrometry (cIMS-MS) was explored as a potential tool for the separation of catechin epimers. Formation of sodium and lithium adducts enhanced IMS separation of catechin epimers, compared to deprotonation and protonation. Baseline separation of the sodium adducts of catechin epimers was achieved. Moreover, we developed a fast method for the identification and semi-quantification of cIMS-MS separated catechin epimers. With this method, it is possible to semi-quantify the ratio between EC and C (1:5 to 5:1, within 50-1200 ng mL-1) in food samples, such as tea. Finally, the newly developed approach for cIMS-MS separation of flavonoids was demonstrated to be successful in separation of two sets of positional isomers (i.e. morin, tricetin, and quercetin; and kaempferol, fisetin, luteolin, and scutellarein). To conclude, we showed that both epimers and positional isomers of flavonoids can be separated using cIMS-MS, and established the potential of this method for challenging flavonoid separations.
Assuntos
Catequina , Flavonoides , Flavonoides/análise , Catequina/análise , Catequina/química , Espectrometria de Massas/métodos , Chá/química , Sódio/análiseRESUMO
Mixed pyrophosphate salts with the general formula Ca2(1-x)Fe4x(P2O7)(1+2x) potentially possess less iron-phenolic reactivity compared to ferric pyrophosphate (FePP), due to decreased soluble Fe in the food-relevant pH range 3-7. We investigated reactivity (i.e., complexation, oxidation, and surface interaction) of FePP and mixed salts (with x = 0.14, 0.15, 0.18, and 0.35) in presence of structurally diverse phenolics. At pH 5-7, increased soluble iron from all salts was observed in presence of water-soluble phenolics. XPS confirmed that water-soluble phenolics solubilize iron after coordination at the salt surface, resulting in increased discoloration. However, color changes for mixed salts with x ≤ 0.18 remained acceptable for slightly water-soluble and insoluble phenolics. Furthermore, phenolic oxidation in presence of mixed salts was significantly reduced compared to FePP at pH 6. In conclusion, these mixed Ca-Fe(III) pyrophosphate salts with x ≤ 0.18 can potentially be used in designing iron-fortified foods containing slightly water-soluble and/or insoluble phenolics.
Assuntos
Compostos Férricos , Sais , Difosfatos , Alimentos Fortificados/análise , Ferro , FenóisRESUMO
Oxidative coupling of hydroxycinnamoylagmatines in barley (Hordeum vulgare) and related Hordeum species is part of the plant defense mechanism. Three linkage types have been reported for hydroxycinnamoylagmatine dimers, but knowledge on oxidative coupling reactions underlying their formation is limited. In this study, the monomers coumaroylagmatine, feruloylagmatine, and sinapoylagmatine were each incubated with horseradish peroxidase. Their coupling reactivity was in line with the order of peak potentials measured: sinapoylagmatine (245 mV) > feruloylagmatine (341 mV) > coumaroylagmatine (506 mV). Structure elucidation of fourteen in vitro coupling products by NMR and MS revealed that the three main linkage types were identical to those naturally present in Hordeum species, namely, 4-O-7'/3-8', 2-7'/8-8', and 8-8'/9-N-7'. Furthermore, we identified two linkage types that were not previously reported for hydroxycinnamoylagmatine dimers, namely, 8-8' and 4-O-8'. We conclude that oxidative coupling by horseradish peroxidase can be used for biomimetic formation of natural antifungal hydroxycinnamoylagmatine dimers from barley.
Assuntos
Hordeum , Acoplamento Oxidativo , Biomimética , Peroxidase do Rábano SilvestreRESUMO
Catechol motifs are ubiquitous in nature, as part of plant, animal and microbial metabolites, and are known to form complexes with various metal cations. Here, we report for the first time that complexation with transition metal cations, especially Fe(III), results in rapid 16O/18O exchange of the catecholic hydroxyl groups with H218O. We discuss the implications of this finding for mechanistic studies using H218O and potential relevance for production of 18O-labeled catechol derivatives.
Assuntos
Compostos Férricos , Elementos de Transição , Catecóis , CátionsRESUMO
Phenol amides are bioactive compounds naturally present in many plants. This class of compounds is known for antioxidant, anti-inflammatory, and anticancer activities. To better understand the reactivity and structure-bioactivity relationships of phenol amides, a large set of structurally diverse pure compounds are needed, however purification from plants is inefficient and laborious. Existing syntheses require multiple steps, including protection of functional groups and are generally overly complicated and only suitable for specific combinations of hydroxycinnamic acid and amine. Thus, to facilitate further studies on these promising compounds, we aimed to develop a facile general synthetic route to obtain phenol amides with a wide structural diversity. The result is a protocol for straightforward one-pot synthesis of phenol amides at room temperature within 25 h using equimolar amounts of N,N'-dicyclohexylcarbodiimide (DCC), amine, hydroxycinnamic acid, and sodium bicarbonate in aqueous acetone. Eight structurally diverse phenol amides were synthesized and fully chemically characterized. The facile synthetic route described in this work is suitable for a wide variety of biologically relevant phenol amides, consisting of different hydroxycinnamic acid subunits (coumaric acid, ferulic acid, and sinapic acid) and amine subunits (agmatine, anthranilic acid, putrescine, serotonin, tyramine, and tryptamine) with yields ranging between 14% and 24%.
Assuntos
Amidas , Ácidos Cumáricos , Amidas/química , Ácidos Cumáricos/química , Fenol , Fenóis , TiraminaRESUMO
Iron-flavonoid interactions in iron-fortified foods lead to undesirable discolouration. This study aimed to investigate iron-mediated complexation, oxidation, and resulting discolouration of flavonoids by spectrophotometric and mass spectrometric techniques. At pH 6.5, iron complexation to the 3-4 or 4-5 site instantly resulted in bathochromic shifting of the π â π* transition bands, and complexation to the 3'-4' site (i.e. catechol moiety) induced a π â dπ transition band. Over time, iron-mediated oxidative degradation and coupling reactions led to the formation of hydroxybenzoic acid derivatives and dehydrodimers, respectively resulting in a decrease or increase in discolouration. Additionally, we employed XRD, SEM, and TEM to reveal the formation of insoluble black metal-phenolic networks (MPNs). This integrated study on iron-mediated complexation and oxidation of flavonoids showed that the presence of the C2-C3 double bond in combination with the catechol moiety and either the 4-carbonyl or 3-hydroxyl increased the intensity of discolouration, extent of oxidation, and formation of MPNs.
Assuntos
Flavonoides , Ferro , Oxirredução , Fenóis , EspectrofotometriaRESUMO
Prenylated (iso)flavonoids are potent bioactive compounds found in the Fabaceae family. Analysis and quantification of this type of phytochemicals is challenging due to their large structural diversity. In this study, the fragmentation of prenylated (iso)flavonoids was investigated using electrospray ionization ion trap mass spectrometry (ESI-IT-MSn) with fragmentation by collision induced dissociation (CID) in combination and Orbitrap-MS (ESI-FT-MS2) with fragmentation by higher energy C-trap dissociation (HCD). With this combination of IT-MSn and high resolution MS (FT-MSn), it was possible to determine the fragmentation pathways and characteristic spectral features of different subclasses of prenylated (iso)flavonoid standards, as well as characteristic fragmentations and neutral losses of different prenyl configurations. Based on our findings, a decision guideline was developed to (i) identify (iso)flavonoid backbones, (ii) annotate prenyl number, (iii) configuration, and (iv) position of unknown prenylated (iso)flavonoids, in complex plant extracts. In this guideline, structural characteristics were identified based on: (i) UV absorbance of the compound, (ii) mass-to-charge (m/z) ratio of the parent compound; (iii) ratio of relative abundances between neutral losses 42 and 56 u in MSn; (iv) retro-Diels-Alder (RDA) fragments, neutral losses 54 and 68 u, and the ratio [M+H-C4H8]+/[M+H]+. Using this guideline, 196 prenylated (iso)flavonoids were annotated in a Glycyrrhiza glabra root extract. In total, 75 skeletons were single prenylated, 104 were double prenylated, and for merely 17 skeletons prenyl number could not unambiguously be annotated. Our prenylation guideline allows rapid screening for identification of prenylated (iso)flavonoids, including prenyl number, configuration, and position, in complex plant extracts. This guideline supports research on these bioactive compounds in the areas of plant metabolomics and natural products.
Assuntos
Flavonoides , Espectrometria de Massas por Ionização por Electrospray , Neopreno , Extratos Vegetais , PrenilaçãoRESUMO
Phenylalkenoic acid amides, often referred to as phenol amides or hydroxycinnamic acid amides, are bioactive phytochemicals, whose bioactivity can be enhanced by coupling to form dimers or oligomers. Phenylalkenoic acid amides consist of a (hydroxy)cinnamic acid derivative (i.e., the phenylalkenoic acid subunit) linked to an amine-containing compound (i.e., the amine subunit) via an amide bond. The phenylalkenoic acid moiety can undergo oxidative coupling, either catalyzed by oxidative enzymes or due to autoxidation, which leads to the formation of (neo)lignanamides. Dimers described in the literature are often named after the species in which the compound was first discovered; however, the naming of these compounds lacks a systematic approach. We propose a new nomenclature, inspired by the existing system used for hydroxycinnamic acid dimers and lignin. In the proposed systematic nomenclature for (neo)lignanamides, compound names will be composed of three-letter codes and prefixes denoting the subunits, and numbers that indicate the carbon atoms involved in the linkage between the monomeric precursors. The proposed nomenclature is consistent, future-proof, and systematic.
Assuntos
Amidas/química , Terminologia como Assunto , Amidas/classificação , Ácidos Cumáricos , Estrutura Molecular , FenóisRESUMO
Due to low bioavailability of dietary phenolic compounds in small intestine, their metabolism by gut microbiota is gaining increasing attention. The microbial metabolism of theasinensin A (TSA), a bioactive catechin dimer found in black tea, has not been studied yet. Here, TSA was extracted and purified for in vitro fermentation by human fecal microbiota, and epigallocatechin gallate (EGCG) and procyanidin B2 (PCB2) were used for comparison. Despite the similarity in their flavan-3-ol skeletons, metabolic fate of TSA was distinctively different. After degalloylation, its core biphenyl-2,2',3,3',4,4'-hexaol structure remained intact during fermentation. Conversely, EGCG and PCB2 were promptly degraded into a series of hydroxylated phenylcarboxylic acids. Computational analyses comparing TSA and PCB2 revealed that TSA's stronger interflavanic bond and more compact stereo-configuration might underlie its lower fermentability. These insights in the recalcitrance of theasinensins to degradation by human gut microbiota are of key importance for a comprehensive understanding of its health benefits.
Assuntos
Camellia sinensis , Catequina , Microbioma Gastrointestinal , Benzopiranos , Humanos , Fenóis , CháRESUMO
Theaflavin-3,3'-digallate (TFDG), a bioactive black tea phenolic, is poorly absorbed in the small intestine, and it has been suggested that gut microbiota metabolism plays a crucial role in its bioactivities. However, information on its metabolic fate and impact on gut microbiota is limited. Here, TFDG was anaerobically fermented in vitro by human fecal microbiota, and epigallocatechin gallate (EGCG) was used for comparison. Despite the similar flavan-3-ol skeletons, TFDG was more slowly degraded and yielded a distinctively different metabolic profile. The formation of theanaphthoquinone as the main metabolites was unique to TFDG. Additionally, a number of hydroxylated phenylcarboxylic acids were formed with low concentrations, when comparing to EGCG metabolism. Microbiome profiling demonstrated several similarities in gut microbiota modulatory effects, including growth-promoting effects on Bacteroides, Faecalibacterium, Parabacteroides, and Bifidobacterium, and inhibitory effects on Prevotella and Fusobacterium. In conclusion, TFDG and EGCG underwent significantly different microbial metabolic fates, yet their gut microbiota modulatory effects were similar.
Assuntos
Bactérias/metabolismo , Biflavonoides/metabolismo , Catequina/análogos & derivados , Microbioma Gastrointestinal , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biflavonoides/química , Camellia sinensis/metabolismo , Catequina/química , Catequina/metabolismo , Fezes/microbiologia , Feminino , Humanos , Masculino , Estrutura Molecular , Filogenia , Adulto JovemRESUMO
Green tea catechins are well known for their health benefits. However, these compounds can easily be oxidized, resulting in brown color formation, even in the absence of active oxidative enzymes. Browning of catechin-rich beverages, such as green tea, during their shelf life is undesired. The mechanisms of auto-oxidation of catechins and the brown products formed are still largely unknown. Therefore, we studied auto-oxidative browning of epicatechin (EC) and epigallocatechin (EGC) in model systems. Products of EC and EGC auto-oxidation were analyzed by reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled to mass spectrometry (RP-UHPLC-PDA-MS). In the EC model system, 11 δ-type dehydrodicatechins (DhC2s) and 18 δ-type dehydrotricatechins (DhC3s) that were related to browning could be tentatively identified by their MS2 signature fragments. In the EGC model system, auto-oxidation led to the formation of 13 dihydro-indene-carboxylic acid derivatives and 2 theaflagallins that were related to browning. Based on the products formed, we propose mechanisms for the auto-oxidative browning of EC and EGC. Furthermore, our results indicate that dimers and oligomers that possess a combination of an extended conjugated system, fused rings, and carbonyl groups are responsible for the brown color formation in the absence of oxidative enzymes.