Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Biochem Cell Biol ; 134: 105960, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636396

RESUMO

Netrin-4, recognized in neural and vascular development, is highly expressed by mature endothelial cells. The function of this netrin-4 in vascular biology after development has remained unclear. We found that the expression of netrin-4 is highly regulated in endothelial cells and is important for quiescent healthy endothelium. Netrin-4 expression is upregulated in endothelial cells cultured under laminar flow conditions, while endothelial cells stimulated with tumor necrosis factor alpha resulted in decreased netrin-4 expression. Targeted reduction of netrin-4 in endothelial cells resulted in increased expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Besides, these endothelial cells were more prone to monocyte adhesion and showed impaired barrier function, measured with electric cell-substrate impedance sensing, as well as in an 'organ-on-a-chip' microfluidic system. Importantly, endothelial cells with reduced levels of netrin-4 showed increased expression of the senescence-associated markers cyclin-dependent kinase inhibitor-1 and -2A, an increased cell size and decreased ability to proliferate. Consistent with the gene expression profile, netrin-4 reduction was accompanied with more senescent associated ß-galactosidase activity, which could be rescued by adding netrin-4 protein. Finally, using human decellularized kidney extracellular matrix scaffolds, we found that pre-treatment of the scaffolds with netrin-4 increased numbers of endothelial cells adhering to the matrix, showing a pro-survival effect of netrin-4. Taken together, netrin-4 acts as an anti-senescence and anti-inflammation factor in endothelial cell function and our results provide insights as to maintain endothelial homeostasis and supporting vascular health.


Assuntos
Endotélio Vascular/metabolismo , Inflamação/prevenção & controle , Netrinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Células Cultivadas , Senescência Celular/fisiologia , Endotélio Vascular/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Netrinas/genética
2.
Innate Immun ; 27(2): 118-132, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33241976

RESUMO

In response to inflammatory cytokines and chemokines, monocytes differentiate into macrophages. Comprehensive analysis of gene expression regulation of neuronal guidance cue (NGC) ligands and receptors in the monocyte-to-macrophage differentiation process is not available yet. We performed transcriptome profiling in both human primary PBMCs/PBMC-derived macrophages and THP-1 cells/THP-1-macrophages using microarray or RNA sequencing methods. Pathway analysis showed that the axonal guidance pathway is significantly regulated upon monocyte differentiation. We confirmed NGC ligands and receptors which were consistently regulated, including SEMA4D, SEMA7A, NRP1, NRP2, PLXNA1 and PLXNA3. The involvement of RNA-binding protein quaking (QKI) in the regulation of NGC expression was investigated using monocytes and macrophages from a QKI haplo-insufficient patient and her healthy sibling. This revealed a positive correlation of SEMA7A expression with QKI expression. In silico analysis of 3'UTRs of NGCs proposed the competitive binding of QKI to proximal microRNA targeting sites as the mechanism of QKI-dependent regulation of SEMA7A. RNA immunoprecipitation confirmed an interaction of QKI with the 3'UTR of SEMA7A. Loss of SEMA7A resulted in monocyte differentiation towards a more anti-inflammatory macrophage. Taken together, the axonal guidance pathway is regulated during monocyte-to-macrophage differentiation, and the regulation is in line with the necessary functional adaption for the specialised role of macrophages.


Assuntos
Regiões 3' não Traduzidas/genética , Macrófagos/fisiologia , MicroRNAs/genética , Monócitos/fisiologia , Proteínas de Ligação a RNA/genética , RNA/genética , Semaforinas/metabolismo , Orientação de Axônios/genética , Diferenciação Celular , Feminino , Perfilação da Expressão Gênica , Haploinsuficiência , Humanos , Cultura Primária de Células , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Semaforinas/genética , Irmãos , Células THP-1
3.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098168

RESUMO

In normal physiology, endothelial cells (ECs) form a vital barrier between the blood and underlying tissue controlling leukocyte diapedesis and vascular inflammation. Emerging data suggest that neuronal guidance cues, typically expressed during development, have roles outside the nervous system in vascular biology and immune responses. In particular, Class III semaphorins have been reported to affect EC migration and angiogenesis. While ECs express high levels of semaphorin 3F (SEMA3F), little is known about its function in mature ECs. Here we show that SEMA3F expression is reduced by inflammatory stimuli and increased by laminar flow. Endothelial cells exposed to laminar flow secrete SEMA3F, which subsequently binds to heparan sulfates on the surface of ECs. However, under pro-inflammatory conditions, reduced levels of SEMA3F make ECs more prone to monocyte diapedesis and display impaired barrier function as measured with an electric cell-substrate impedance sensing system and a microfluidic system. In addition, we demonstrate that SEMA3F can directly inhibit the migration of activated monocytes. Taken together, our data suggest an important homeostatic function for EC-expressed SEMA3F, serving as a mediator of endothelial quiescence.


Assuntos
Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Migração Transendotelial e Transepitelial , Endotélio Vascular/patologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Monócitos/patologia
4.
Epigenomes ; 4(1)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-34968236

RESUMO

In the pathophysiologic setting of acute and chronic kidney injury, the excessive activation and recruitment of blood-borne monocytes prompts their differentiation into inflammatory macrophages, a process that leads to progressive glomerulosclerosis and interstitial fibrosis. Importantly, this differentiation of monocytes into macrophages requires the meticulous coordination of gene expression at both the transcriptional and post-transcriptional level. The transcriptomes of these cells are ultimately determined by RNA-binding proteins such as QUAKING (QKI), that define their pre-mRNA splicing and mRNA transcript patterns. Using two mouse models, namely (1) quaking viable mice (qkv) and (2) the conditional deletion in the myeloid cell lineage using the lysozyme 2-Cre (QKIFL/FL;LysM-Cre mice), we demonstrate that the abrogation of QKI expression in the myeloid cell lineage reduces macrophage infiltration following kidney injury induced by unilateral urethral obstruction (UUO). The qkv and QKIFL/FL;LysM-Cre mice both showed significant diminished interstitial collagen deposition and fibrosis in the UUO-damaged kidney, as compared to wild-type littermates. We show that macrophages isolated from QKIFL/FL;LysM-Cre mice are associated with defects in pre-mRNA splicing. Our findings demonstrate that reduced expression of the alternative splice regulator QKI in the cells of myeloid lineage attenuates renal interstitial fibrosis, suggesting that inhibition of this splice regulator may be of therapeutic value for certain kidney diseases.

5.
Sci Rep ; 8(1): 15385, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337617

RESUMO

In chronic kidney disease (CKD), endothelial injury, is associated with disease progression and an increased risk for cardiovascular complications. Circulating cells with vascular reparative functions are hematopoietic and also reduced in CKD. To explore the mechanistic basis behind these observations, we have investigated hematopoietic stem cell (HSC) homeostasis in a mouse model for non-progressive CKD-mineral and bone disorder with experimentally induced chronic renal failure (CRF). In mice subjected to 12 weeks of CRF, bone marrow HSC frequencies were decreased and transplantation of bone marrow cells from CRF donors showed a decrease in long-term HSC repopulation compared to controls. This loss was directly associated with a CRF-induced defect in the HSC niche affecting the cell cycle status of HSC and could not be restored by the PTH-reducing agent cinacalcet. In CRF, frequencies of quiescent (G0) HSC were decreased coinciding with an increase in hematopoietic progenitor cells (HPC) in the S-and G2-phases of cell cycle. Moreover, in CRF mice, HSC-niche supporting macrophages were decreased compared to controls concomitant to impaired B lymphopoiesis. Our data point to a permanent loss of HSC and may provide insight into the root cause of the loss of homeostatic potential in CKD.


Assuntos
Doenças da Medula Óssea/etiologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/complicações , Células-Tronco Hematopoéticas/patologia , Nicho de Células-Tronco , Animais , Densidade Óssea/efeitos dos fármacos , Doenças da Medula Óssea/patologia , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/sangue , Distúrbio Mineral e Ósseo na Doença Renal Crônica/tratamento farmacológico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/fisiopatologia , Cinacalcete/farmacologia , Cinacalcete/uso terapêutico , Modelos Animais de Doenças , Endotélio Vascular/patologia , Feminino , Homeostase , Linfopoese , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nefrectomia , Osteoblastos/patologia
6.
Am J Physiol Renal Physiol ; 315(4): F1129-F1138, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846108

RESUMO

Fine-tuning of the body's water balance is regulated by vasopressin (AVP), which induces the expression and apical membrane insertion of aquaporin-2 water channels and subsequent water reabsorption in the kidney. Here we demonstrate that silencing of microRNA-132 (miR-132) in mice causes severe weight loss due to acute diuresis coinciding with increased plasma osmolality, reduced renal total and plasma membrane expression of aquaporin-2, and abrogated increase in AVP levels. Infusion with synthetic AVP fully reversed the antagomir-132-induced diuresis, and low-dose intracerebroventricular administration of antagomir-132 similarly caused acute diuresis. Central and intracerebroventricular antagomir-132 injection both decreased hypothalamic AVP mRNA levels. At the molecular level, antagomir-132 increased the in vivo and in vitro mRNA expression of methyl-CpG-binding protein-2 (MECP2), which is a miR-132 target and which blocks AVP gene expression by binding its enhancer region. In line with this, treatment of hypothalamic N6 cells with a high-salt solution increased its miR-132 levels, whereas it attenuated endogenous Mecp2 mRNA levels. In conclusion, we identified miR-132 as a first miRNA regulating the osmotic balance by regulating the hypothalamic AVP gene mRNA expression.


Assuntos
Arginina Vasopressina/metabolismo , Homeostase/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , MicroRNAs/genética , Vasopressinas/metabolismo , Animais , Aquaporina 2/metabolismo , Expressão Gênica/genética , Hipotálamo/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Concentração Osmolar , Receptores de Vasopressinas/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia
7.
Eur Heart J ; 38(18): 1380-1388, 2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-28064149

RESUMO

The cardiovascular system comprises multiple cell types that possess the capacity to modulate their phenotype in response to acute or chronic injury. Transcriptional and post-transcriptional mechanisms play a key role in the regulation of remodelling and regenerative responses to damaged cardiovascular tissues. Simultaneously, insufficient regulation of cellular phenotype is tightly coupled with the persistence and exacerbation of cardiovascular disease. Recently, RNA-binding proteins such as Quaking, HuR, Muscleblind, and SRSF1 have emerged as pivotal regulators of these functional adaptations in the cardiovascular system by guiding a wide-ranging number of post-transcriptional events that dramatically impact RNA fate, including alternative splicing, stability, localization and translation. Moreover, homozygous disruption of RNA-binding protein genes is commonly associated with cardiac- and/or vascular complications. Here, we summarize the current knowledge on the versatile role of RNA-binding proteins in regulating the transcriptome during phenotype switching in cardiovascular health and disease. We also detail existing and potential DNA- and RNA-based therapeutic approaches that could impact the treatment of cardiovascular disease in the future.


Assuntos
Doenças Cardiovasculares/genética , Proteínas de Ligação a RNA/fisiologia , Processamento Alternativo/genética , Doenças Cardiovasculares/terapia , Células Endoteliais/fisiologia , Terapia Genética/métodos , Humanos , Músculo Liso Vascular/fisiologia , Miócitos Cardíacos/fisiologia , Fenótipo , RNA/genética , Células Estromais/fisiologia , Transcriptoma/genética
8.
Kidney Int ; 89(6): 1268-80, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27165825

RESUMO

Chronic kidney disease is associated with progressive renal fibrosis, where perivascular cells give rise to the majority of α-smooth muscle actin (α-SMA) positive myofibroblasts. Here we sought to identify pericytic miRNAs that could serve as a target to decrease myofibroblast formation. Kidney fibrosis was induced in FoxD1-GC;Z/Red-mice by unilateral ureteral obstruction followed by FACS sorting of dsRed-positive FoxD1-derivative cells and miRNA profiling. MiR-132 selectively increased 21-fold during pericyte-to-myofibroblast formation, whereas miR-132 was only 2.5-fold up in total kidney lysates (both in obstructive and ischemia-reperfusion injury). MiR-132 silencing during obstruction decreased collagen deposition (35%) and tubular apoptosis. Immunohistochemistry, Western blot, and qRT-PCR confirmed a similar decrease in interstitial α-SMA(+) cells. Pathway analysis identified a rate-limiting role for miR-132 in myofibroblast proliferation that was confirmed in vitro. Indeed, antagomir-132-treated mice displayed a reduction in the number of proliferating Ki67(+) interstitial myofibroblasts. Interestingly, this was selective for the interstitial compartment and did not impair the reparative proliferation of tubular epithelial cells, as evidenced by an increase in Ki67(+) epithelial cells, as well as increased phospho-RB1, Cyclin-A and decreased RASA1, p21 levels in kidney lysates. Additional pathway and gene expression analyses suggest miR-132 coordinately regulates genes involved in TGF-ß signaling (Smad2/Smad3), STAT3/ERK pathways, and cell proliferation (Foxo3/p300). Thus, silencing miR-132 counteracts the progression of renal fibrosis by selectively decreasing myofibroblast proliferation and could potentially serve as a novel antifibrotic therapy.


Assuntos
Proliferação de Células/genética , Rim/patologia , MicroRNAs/genética , Miofibroblastos/fisiologia , Insuficiência Renal Crônica/patologia , Actinas/metabolismo , Animais , Antagomirs/genética , Apoptose , Linhagem Celular , Colágeno/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Imuno-Histoquímica , Túbulos Renais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Pericitos/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fator de Crescimento Transformador beta
9.
Nat Commun ; 7: 10846, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029405

RESUMO

A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.


Assuntos
Macrófagos/fisiologia , Monócitos/fisiologia , Splicing de RNA , Proteínas de Ligação a RNA/fisiologia , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Diferenciação Celular , Células Espumosas/citologia , Células Espumosas/metabolismo , Regulação da Expressão Gênica , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Modelos Genéticos , Monócitos/citologia , Monócitos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
Nucleic Acids Res ; 44(9): e83, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26837572

RESUMO

Recent studies show that RNA-binding proteins (RBPs) and microRNAs (miRNAs) function in coordination with each other to control post-transcriptional regulation (PTR). Despite this, the majority of research to date has focused on the regulatory effect of individual RBPs or miRNAs. Here, we mapped both RBP and miRNA binding sites on human 3'UTRs and utilized this collection to better understand PTR. We show that the transcripts that lack competition for HuR binding are destabilized more after HuR depletion. We also confirm this finding for PUM1(2) by measuring genome-wide expression changes following the knockdown of PUM1(2) in HEK293 cells. Next, to find potential cooperative interactions, we identified the pairs of factors whose sites co-localize more often than expected by random chance. Upon examining these results for PUM1(2), we found that transcripts where the sites of PUM1(2) and its interacting miRNA form a stem-loop are more stabilized upon PUM1(2) depletion. Finally, using dinucleotide frequency and counts of regulatory sites as features in a regression model, we achieved an AU-ROC of 0.86 in predicting mRNA half-life in BEAS-2B cells. Altogether, our results suggest that future studies of PTR must consider the combined effects of RBPs and miRNAs, as well as their interactions.


Assuntos
MicroRNAs/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Biologia Computacional/métodos , Células HEK293 , Meia-Vida , Células HeLa , Humanos , Células MCF-7 , Conformação de Ácido Nucleico , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Transcrição Gênica/genética
11.
Sci Rep ; 6: 21643, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26905650

RESUMO

Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and ß-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and ß-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.


Assuntos
Antígenos CD/genética , Caderinas/genética , Células Endoteliais da Veia Umbilical Humana/fisiologia , Proteínas de Ligação a RNA/fisiologia , beta Catenina/genética , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Feminino , Expressão Gênica , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ativação Transcricional , beta Catenina/metabolismo
12.
J Am Soc Nephrol ; 25(8): 1710-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24610930

RESUMO

Ischemia/reperfusion injury (IRI) is a central phenomenon in kidney transplantation and AKI. Integrity of the renal peritubular capillary network is an important limiting factor in the recovery from IRI. MicroRNA-126 (miR-126) facilitates vascular regeneration by functioning as an angiomiR and by modulating mobilization of hematopoietic stem/progenitor cells. We hypothesized that overexpression of miR-126 in the hematopoietic compartment could protect the kidney against IRI via preservation of microvascular integrity. Here, we demonstrate that hematopoietic overexpression of miR-126 increases neovascularization of subcutaneously implanted Matrigel plugs in mice. After renal IRI, mice overexpressing miR-126 displayed a marked decrease in urea levels, weight loss, fibrotic markers, and injury markers (such as kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin). This protective effect was associated with a higher density of the peritubular capillary network in the corticomedullary junction and increased numbers of bone marrow-derived endothelial cells. Hematopoietic overexpression of miR-126 increased the number of circulating Lin(-)/Sca-1(+)/cKit(+) hematopoietic stem and progenitor cells. Additionally, miR-126 overexpression attenuated expression of the chemokine receptor CXCR4 on Lin(-)/Sca-1(+)/cKit(+) cells in the bone marrow and increased renal expression of its ligand stromal cell-derived factor 1, thus favoring mobilization of Lin(-)/Sca-1(+)/cKit(+) cells toward the kidney. Taken together, these results suggest overexpression of miR-126 in the hematopoietic compartment is associated with stromal cell-derived factor 1/CXCR4-dependent vasculogenic progenitor cell mobilization and promotes vascular integrity and supports recovery of the kidney after IRI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Células-Tronco Hematopoéticas/fisiologia , Rim/irrigação sanguínea , MicroRNAs/fisiologia , Neovascularização Fisiológica/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Movimento Celular/fisiologia , Quimiocina CXCL12/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Receptores CXCR4/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
13.
Circ Res ; 113(9): 1065-75, 2013 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23963726

RESUMO

RATIONALE: RNA-binding proteins are critical post-transcriptional regulators of RNA and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMCs), is currently unknown. OBJECTIVE: We sought to determine the role of QKI in regulating adult VSMC function and plasticity. METHODS AND RESULTS: We identified that QKI is highly expressed by neointimal VSMCs of human coronary restenotic lesions, but not in healthy vessels. In a mouse model of vascular injury, we observed reduced neointima hyperplasia in Quaking viable mice, which have decreased QKI expression. Concordantly, abrogation of QKI attenuated fibroproliferative properties of VSMCs, while potently inducing contractile apparatus protein expression, rendering noncontractile VSMCs with the capacity to contract. We identified that QKI localizes to the spliceosome, where it interacts with the myocardin pre-mRNA and regulates the splicing of alternative exon 2a. This post-transcriptional event impacts the Myocd_v3/Myocd_v1 mRNA balance and can be modulated by mutating the quaking response element in exon 2a of myocardin. Furthermore, we identified that arterial damage triggers myocardin alternative splicing and is tightly coupled with changes in the expression levels of distinct QKI isoforms. CONCLUSIONS: We propose that QKI is a central regulator of VSMC phenotypic plasticity and that intervention in QKI activity can ameliorate pathogenic, fibroproliferative responses to vascular injury.


Assuntos
Proliferação de Células , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Lesões das Artérias Carótidas/metabolismo , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Movimento Celular , Reestenose Coronária/metabolismo , Reestenose Coronária/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hiperplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Quaking , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Transativadores/genética , Transativadores/metabolismo , Transfecção
14.
Microrna ; 1(1): 2-10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-25048084

RESUMO

Endothelial to mesenchymal transition (EndoMT) has been proposed to be involved in the loss of microvascular capillaries in the pathophysiology of fibrosis and organ failure. In EndoMT, endothelial cells (EC) undergo a mesenchymal transition associated with the loss of cell-cell contacts and the acquisition of a synthetic, contractile phenotype. Here, we sought to identify microRNAs (miRNAs) that could play a central role in regulating EndoMT. In a TGF-ß dependent in vitro model for EndoMT, we identified miRNAs that were differentially expressed in normoxic and hypoxic conditions. These studies identified miR-155 to be significantly upregulated in EndoMT, an effect that was enhanced under hypoxia, which further augments EndoMT. Silencing of miR-155 directly increased RhoA expression and activity in endothelial cells and affected phosphorylation of downstream LIMK. In contrast, overexpression of miR-155 counteracted RhoA function. Using a selective Rho kinase inhibitor, we could partly suppress EndoMT, strengthening the notion that RhoA plays a central role in EndoMT. Forced overexpression of miR-155 completely suppressed EndoMT, as evidenced by the maintenance of EC characteristics and blocking the acquisition of a mesenchymal phenotype, as compared to control cells. Our data demonstrate that miRNA-155 functions as a negative regulator of RhoA signaling in TGF-ß-induced endothelial to mesenchymal transition.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA