Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Microbiol ; 8(6): 1051-1063, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188812

RESUMO

Human monoclonal antibodies (mAbs) that target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have been isolated from convalescent individuals and developed into therapeutics for SARS-CoV-2 infection. However, therapeutic mAbs for SARS-CoV-2 have been rendered obsolete by the emergence of mAb-resistant virus variants. Here we report the generation of a set of six human mAbs that bind the human angiotensin-converting enzyme-2 (hACE2) receptor, rather than the SARS-CoV-2 spike protein. We show that these antibodies block infection by all hACE2 binding sarbecoviruses tested, including SARS-CoV-2 ancestral, Delta and Omicron variants at concentrations of ~7-100 ng ml-1. These antibodies target an hACE2 epitope that binds to the SARS-CoV-2 spike, but they do not inhibit hACE2 enzymatic activity nor do they induce cell-surface depletion of hACE2. They have favourable pharmacology, protect hACE2 knock-in mice against SARS-CoV-2 infection and should present a high genetic barrier to the acquisition of resistance. These antibodies should be useful prophylactic and treatment agents against any current or future SARS-CoV-2 variants and might be useful to treat infection with any hACE2-binding sarbecoviruses that emerge in the future.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Animais , Camundongos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Monoclonais/farmacologia
2.
Cell ; 186(1): 131-146.e13, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36565697

RESUMO

Germinal centers (GCs) form in secondary lymphoid organs in response to infection and immunization and are the source of affinity-matured B cells. The duration of GC reactions spans a wide range, and long-lasting GCs (LLGCs) are potentially a source of highly mutated B cells. We show that rather than consisting of continuously evolving B cell clones, LLGCs elicited by influenza virus or SARS-CoV-2 infection in mice are sustained by progressive replacement of founder clones by naive-derived invader B cells that do not detectably bind viral antigens. Rare founder clones that resist replacement for long periods are enriched in clones with heavily mutated immunoglobulins, including some with very high affinity for antigen, that can be recalled by boosting. Our findings reveal underappreciated aspects of the biology of LLGCs generated by respiratory virus infection and identify clonal replacement as a potential constraint on the development of highly mutated antibodies within these structures.


Assuntos
Linfócitos B , Centro Germinativo , Infecções por Vírus de RNA , Animais , Camundongos , Linfócitos B/citologia , Linfócitos B/imunologia , Células Clonais , COVID-19 , Centro Germinativo/citologia , Centro Germinativo/imunologia , SARS-CoV-2 , Influenza Humana , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/patologia , Infecções por Vírus de RNA/virologia
3.
Front Immunol ; 13: 1007080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451809

RESUMO

Efficient mouse models to study SARS-CoV-2 infection are critical for the development and assessment of vaccines and therapeutic approaches to mitigate the current pandemic and prevent reemergence of COVID-19. While the first generation of mouse models allowed SARS-CoV-2 infection and pathogenesis, they relied on ectopic expression and non-physiological levels of human angiotensin-converting enzyme 2 (hACE2). Here we generated a mouse model carrying the minimal set of modifications necessary for productive infection with multiple strains of SARS-CoV-2. Substitution of only three amino acids in the otherwise native mouse Ace2 locus (Ace2 TripleMutant or Ace2™), was sufficient to render mice susceptible to both SARS-CoV-2 strains USA-WA1/2020 and B.1.1.529 (Omicron). Infected Ace2™ mice exhibited weight loss and lung damage and inflammation, similar to COVID-19 patients. Previous exposure to USA-WA1/2020 or mRNA vaccination generated memory B cells that participated in plasmablast responses during breakthrough B.1.1.529 infection. Thus, the Ace2™ mouse replicates human disease after SARS-CoV-2 infection and provides a tool to study immune responses to sequential infections in mice.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , Enzima de Conversão de Angiotensina 2/genética , Modelos Animais de Doenças , Pandemias
4.
PLoS Negl Trop Dis ; 15(3): e0009230, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651805

RESUMO

Leishmania major is the main causative agent of cutaneous leishmaniasis in the Old World. In Leishmania parasites, the lack of transcriptional control is mostly compensated by post-transcriptional mechanisms. Methylation of arginine is a conserved post-translational modification executed by Protein Arginine Methyltransferase (PRMTs). The genome from L. major encodes five PRMT homologs, including the cytosolic protein associated with several RNA-binding proteins, LmjPRMT7. It has been previously reported that LmjPRMT7 could impact parasite infectivity. In addition, a more recent work has clearly shown the importance of LmjPRMT7 in RNA-binding capacity and protein stability of methylation targets, demonstrating the role of this enzyme as an important epigenetic regulator of mRNA metabolism. In this study, we unveil the impact of PRMT7-mediated methylation on parasite development and virulence. Our data reveals that higher levels of LmjPRMT7 can impair parasite pathogenicity, and that deletion of this enzyme rescues the pathogenic phenotype of an attenuated strain of L. major. Interestingly, lesion formation caused by LmjPRMT7 knockout parasites is associated with an exacerbated inflammatory reaction in the tissue correlated with an excessive neutrophil recruitment. Moreover, the absence of LmjPRMT7 also impairs parasite development within the sand fly vector Phlebotomus duboscqi. Finally, a transcriptome analysis shed light onto possible genes affected by depletion of this enzyme. Taken together, this study highlights how post-transcriptional regulation can affect different aspects of the parasite biology.


Assuntos
Leishmania major/enzimologia , Leishmaniose Cutânea/patologia , Neutrófilos/fisiologia , Proteínas Metiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Leishmania major/genética , Leishmania major/metabolismo , Leishmaniose Cutânea/parasitologia , Camundongos , Proteínas Metiltransferases/genética
5.
iScience ; 24(1): 102004, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490912

RESUMO

New World species of the intracellular protozoan parasites of the Leishmania genus can cause mucocutaneous leishmaniases. The presence of an endosymbiotic Leishmania RNA virus (LRV) in Leishmania guyanensis (L.g.) promotes disease exacerbation and the development of mucocutaneous disease. It was previously reported that LRV blocks the NLRP3 inflammasome, but additional mechanisms remain unclear. Here, we investigated whether LRV interferes with the inflammasome via caspase-11, which induces non-canonical NLRP3 activation and was reported to be activated by Leishmania. By using macrophages and mice, we found that LRV inhibits caspase-11 activation and IL-1ß release by L.g. in a TLR3- and ATG5-dependent manner. Moreover, LRV exacerbates disease in C57BL/6 mice but not in Casp11 -/- , Nlrp3 -/- , and 129 mice, a mouse strain that is naturally mutant for caspase-11. These results demonstrate that LRV interferes with caspase-11 activation by Leishmania, expanding our understanding about the mechanisms by which LRV promotes disease exacerbation.

6.
Trends Parasitol ; 36(5): 459-472, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32298633

RESUMO

Inflammasomes are cytosolic complexes that assemble in response to cellular stress or upon sensing microbial molecules, culminating in cytokine processing and an inflammatory form of cell death called pyroptosis. Inflammasomes are usually composed of a sensor molecule, an adaptor protein, and an inflammatory caspase, such as Caspase-1, which cleaves and activates multiple substrates, including Gasdermin-D, pro-IL-1ß, and pro-IL-18. Ultimately, inflammasome activation promotes inflammation and restriction of the microbial infection. In recent years, many studies have addressed the role of inflammasomes during fungal, bacterial, viral, and parasitic diseases, revealing sophisticated aspects of the host-pathogen interaction. In this review, we summarize recent advances on inflammasome activation in response to intracellular parasites, including Leishmania spp., Plasmodium spp., Trypanosoma cruzi, and Toxoplasma gondii.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Inflamassomos/imunologia , Infecções por Protozoários/imunologia , Animais , Eucariotos/imunologia , Humanos , Leishmaniose/imunologia , Leishmaniose/parasitologia , Malária/imunologia , Malária/parasitologia , Infecções por Protozoários/parasitologia , Pesquisa/tendências , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Tripanossomíase/imunologia , Tripanossomíase/parasitologia
7.
Immunology ; 160(1): 78-89, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32107769

RESUMO

Annexins are well-known Ca2+ phospholipid-binding proteins, which have a wide variety of cellular functions. The role of annexin A1 (AnxA1) in the innate immune system has focused mainly on the anti-inflammatory and proresolving properties through its binding to the formyl-peptide receptor 2 (FPR2)/ALX receptor. However, studies suggesting an intracellular role of AnxA1 are emerging. In this study, we aimed to understand the role of AnxA1 for interleukin (IL)-1ß release in response to activators of the nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome. Using AnxA1 knockout mice, we observed that AnxA1 is required for IL-1ß release in vivo and in vitro. These effects were due to reduction of transcriptional levels of IL-1ß, NLRP3 and caspase-1, a step called NLRP3 priming. Moreover, we demonstrate that AnxA1 co-localize and directly bind to NLRP3, suggesting the role of AnxA1 in inflammasome activation is independent of its anti-inflammatory role via FPR2. Therefore, AnxA1 regulates NLRP3 inflammasome priming and activation in a FPR2-independent manner.


Assuntos
Anexina A1/metabolismo , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Administração Intranasal , Animais , Cartilagem Articular , Caspase 1/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Gota/induzido quimicamente , Gota/imunologia , Gota/patologia , Humanos , Inflamassomos/metabolismo , Injeções Intra-Articulares , Pulmão/imunologia , Pulmão/patologia , Macrófagos , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células , Ligação Proteica/imunologia , Dióxido de Silício/administração & dosagem , Dióxido de Silício/toxicidade , Silicose/imunologia , Silicose/patologia , Transcrição Gênica/imunologia , Ácido Úrico/administração & dosagem , Ácido Úrico/toxicidade
9.
Nat Commun ; 10(1): 5273, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754185

RESUMO

Leishmania RNA virus (LRV) is an important virulence factor associated with the development of mucocutaneous Leishmaniasis, a severe form of the disease. LRV-mediated disease exacerbation relies on TLR3 activation, but downstream mechanisms remain largely unexplored. Here, we combine human and mouse data to demonstrate that LRV triggers TLR3 and TRIF to induce type I IFN production, which induces autophagy. This process results in ATG5-mediated degradation of NLRP3 and ASC, thereby limiting NLRP3 inflammasome activation in macrophages. Consistent with the known restricting role of NLRP3 for Leishmania replication, the signaling pathway triggered by LRV results in increased parasite survival and disease progression. In support of this data, we find that lesions in patients infected with LRV+ Leishmania are associated with reduced inflammasome activation and the development of mucocutaneous disease. Our findings reveal the mechanisms triggered by LRV that contribute to the development of the debilitating mucocutaneous form of Leishmaniasis.


Assuntos
Imunidade Inata/imunologia , Inflamassomos/imunologia , Leishmania/imunologia , Leishmaniose Mucocutânea/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Vírus de RNA/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Autofagia/imunologia , Humanos , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Leishmania/fisiologia , Leishmania/virologia , Leishmaniose Mucocutânea/parasitologia , Leishmaniose Mucocutânea/virologia , Macrófagos/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vírus de RNA/fisiologia , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/metabolismo
10.
PLoS Pathog ; 15(9): e1007934, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479495

RESUMO

Mayaro virus (MAYV) is an arbovirus that circulates in Latin America and is emerging as a potential threat to public health. Infected individuals develop Mayaro fever, a severe inflammatory disease characterized by high fever, rash, arthralgia, myalgia and headache. The disease is often associated with a prolonged arthralgia mediated by a chronic inflammation that can last months. Although the immune response against other arboviruses, such as chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV), has been extensively studied, little is known about the pathogenesis of MAYV infection. In this study, we established models of MAYV infection in macrophages and in mice and found that MAYV can replicate in bone marrow-derived macrophages and robustly induce expression of inflammasome proteins, such as NLRP3, ASC, AIM2, and Caspase-1 (CASP1). Infection performed in macrophages derived from Nlrp3-/-, Aim2-/-, Asc-/-and Casp1/11-/-mice indicate that the NLRP3, but not AIM2 inflammasome is essential for production of inflammatory cytokines, such as IL-1ß. We also determined that MAYV triggers NLRP3 inflammasome activation by inducing reactive oxygen species (ROS) and potassium efflux. In vivo infections performed in inflammasome-deficient mice indicate that NLRP3 is involved with footpad swelling, inflammation and pain, establishing a role of the NLRP3 inflammasome in the MAYV pathogenesis. Accordingly, we detected higher levels of caspase1-p20, IL-1ß and IL-18 in the serum of MAYV-infected patients as compared to healthy individuals, supporting the participation of the NLRP3-inflammasome during MAYV infection in humans.


Assuntos
Infecções por Alphavirus/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adulto , Idoso , Infecções por Alphavirus/metabolismo , Animais , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Vírus Chikungunya/metabolismo , Vírus da Dengue/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamassomos/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Espécies Reativas de Oxigênio/metabolismo , Togaviridae/patogenicidade , Zika virus/metabolismo
11.
J Leukoc Biol ; 106(3): 631-640, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063608

RESUMO

The NLRP3 inflammasome is activated in response to multiple stimuli and triggers activation of caspase-1 (CASP1), IL-1ß production, and inflammation. NLRP3 activation requires two signals. The first leads to transcriptional regulation of specific genes related to inflammation, and the second is triggered when pathogens, toxins, or specific compounds damage cellular membranes and/or trigger the production of reactive oxygen species (ROS). Here, we assess the requirement of the first signal (priming) for the activation of the NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) infected with Leishmania amazonensis. We found that BMDMs express the inflammasome components NLRP3, ASC, and CASP1 at sufficient levels to enable the assembly and activation of NLRP3 inflammasome in response to infection. Therefore, priming was not required for the formation of ASC specks, CASP1 activation (measured by fluorescent dye FAM-YVAD), and restriction of L. amazonensis replication via the NLRP3 inflammasome. By contrast, BMDM priming was required for CASP1 cleavage (p20) and IL-1ß secretion, because priming triggers robust up-regulation of pro-IL-1ß and CASP11 that are important for efficient processing of CASP1 and IL-1ß. Taken together, our data shed light into the cellular and molecular processes involved in activation of the NLRP3 in macrophages by Leishmania, a process that is important for the outcome of Leishmaniasis.


Assuntos
Inflamassomos/metabolismo , Leishmania mexicana/fisiologia , Macrófagos/parasitologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Ativação Enzimática , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Cutânea/enzimologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Ligantes , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Parasitos/crescimento & desenvolvimento , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Regulação para Cima
12.
Cell Rep ; 26(2): 429-437.e5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625325

RESUMO

Activation of the NLRP3 inflammasome by Leishmania parasites is critical for the outcome of leishmaniasis, a disease that affects millions of people worldwide. We investigate the mechanisms involved in NLRP3 activation and demonstrate that caspase-11 (CASP11) is activated in response to infection by Leishmania species and triggers the non-canonical activation of NLRP3. This process accounts for host resistance to infection in macrophages and in vivo. We identify the parasite membrane glycoconjugate lipophosphoglycan (LPG) as the molecule involved in CASP11 activation. Cytosolic delivery of LPG in macrophages triggers CASP11 activation, and infections performed with Lpg1-/- parasites reduce CASP11/NLRP3 activation. Unlike bacterial LPS, purified LPG does not activate mouse CASP11 (or human Casp4) in vitro, suggesting the participation of additional molecules for LPG-mediated CASP11 activation. Our data identify a parasite molecule involved in CASP11 activation, thereby establishing the mechanisms underlying inflammasome activation in response to Leishmania species.


Assuntos
Caspases Iniciadoras/metabolismo , Glicoesfingolipídeos/metabolismo , Inflamassomos/metabolismo , Leishmania/metabolismo , Leishmania/patogenicidade , Leishmaniose/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Leishmaniose/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL
13.
J Biol Chem ; 292(32): 13087-13096, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28607148

RESUMO

Leishmaniasis is caused by protozoan parasites of the genus Leishmania In mammalians, these parasites survive and replicate in macrophages and parasite elimination by macrophages is critical for host resistance. Endosomal Toll-like receptors (TLRs) have been shown to be crucial for resistance to Leishmania major in vivo For example, mice in the resistant C57BL/6 genetic background that are triple-deficient for TLR3, -7, and -9 (Tlr3/7/9-/-) are highly susceptible to L. major infection. Tlr3/7/9-/- mice are as susceptible as mice deficient in MyD88 or UNC93B1, a chaperone required for appropriate localization of endosomal TLRs, but the mechanisms are unknown. Here we found that macrophages infected with L. major undergo autophagy, which effectively accounted for restriction of parasite replication. Signaling via endosomal TLRs was required for autophagy because macrophages deficient for TLR3, -7, and 9, UNC93B1, or MyD88 failed to undergo L. major-induced autophagy. We also confirmed that Myd88-/-, Tlr3/7/9-/-, and Unc93b1-/- cells were highly permissive to L. major replication. Accordingly, shRNA-mediated suppression of Atg5, an E3 ubiquitin ligase essential for autophagosome elongation, in macrophages impaired the restriction of L. major replication in C57BL/6, but did not affect parasite replication in Myd88-/- or Unc93b1-/- macrophages. Rapamycin treatment reduced inflammatory lesions formed in the ears of Leishmania-infected C57BL/6 and Tlr3/7/9-/- mice, indicating that autophagy operates downstream of TLR signaling and is relevant for disease development in vivo Collectively, our results indicate that autophagy contributes to macrophage resistance to L. major replication, and mechanistically explain the previously described endosomal TLR-mediated resistance to L. major infection.


Assuntos
Autofagia , Endossomos/parasitologia , Leishmania major/imunologia , Macrófagos/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 3 Toll-Like/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/parasitologia , Células da Medula Óssea/patologia , Células Cultivadas , Resistência à Doença , Endossomos/imunologia , Endossomos/metabolismo , Endossomos/patologia , Feminino , Leishmania major/crescimento & desenvolvimento , Leishmania major/fisiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Interferência de RNA , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA