Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neuroinflammation ; 20(1): 8, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631780

RESUMO

BACKGROUND: The innate lymphoid cell (ILC) family consists of NK cells, ILC type 1, 2, 3 and lymphoid tissue inducer cells. They have been shown to play important roles in homeostasis and immune responses and are generally considered tissue resident. Not much is known about the presence of ILC members within the central nervous system and whether they are tissue resident in this organ too. Therefore, we studied the presence of all ILC members within the central nervous system and after ischemic brain insult. METHODS: We used the photothrombotic ischemic lesion method to induce ischemic lesions within the mouse brain. Using whole-mount immunofluorescence imaging, we established that the ILCs were present at the rim of the lesion. We quantified the increase of all ILC members at different time-points after the ischemic lesion induction by flow cytometry. Their migration route via chemokine CXCL12 was studied by using different genetic mouse models, in which we induced deletion of Cxcl12 within the blood-brain barrier endothelium, or its receptor, Cxcr4, in the ILCs. The functional role of the ILCs was subsequently established using the beam-walk sensorimotor test. RESULTS: Here, we report that ILCs are not resident within the mouse brain parenchyma during steady-state conditions, but are attracted towards the ischemic stroke. Specifically, we identify NK cells, ILC1s, ILC2s and ILC3s within the lesion, the highest influx being observed for NK cells and ILC1s. We further show that CXCL12 expressed at the blood-brain barrier is essential for NK cells and NKp46+ ILC3s to migrate toward the lesion. Complementary, Cxcr4-deficiency in NK cells prevents NK cells from entering the infarct area. Lack of NK cell migration results in a higher neurological deficit in the beam-walk sensorimotor test. CONCLUSIONS: This study establishes the lack of ILCs in the mouse central nervous system at steady-state and their migration towards an ischemic brain lesion. Our data show a role for blood-brain barrier-derived CXCL12 in attracting protective NK cells to ischemic brain lesions and identifies a new CXCL12/CXCR4-mediated component of the innate immune response to stroke.


Assuntos
Quimiocina CXCL12 , AVC Isquêmico , Células Matadoras Naturais , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Quimiocina CXCL12/metabolismo , Células Endoteliais , Imunidade Inata , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Células Matadoras Naturais/metabolismo , Linfócitos
2.
Dev Cell ; 56(22): 3128-3145.e15, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34762852

RESUMO

Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations. Furthermore, inhibition of sphingolipid biosynthesis phenocopies NR2F1/2 deficiency in endothelium and cardiomyocytes, and increases in 1-deoxysphingosine levels activate NR2F1/2-dependent differentiation programs. Our findings suggest that 1-deoxysphingosines are physiological regulators of NR2F1/2-mediated transcription.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Esfingolipídeos/farmacologia , Animais , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Vasos Linfáticos/efeitos dos fármacos , Camundongos , Organogênese/fisiologia , Proteínas Repressoras/fisiologia
3.
Cell Rep ; 32(6): 108004, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783932

RESUMO

During embryogenesis, lymphoid tissue inducer (LTi) cells are essential for lymph node organogenesis. These cells are part of the innate lymphoid cell (ILC) family. Although their earliest embryonic hematopoietic origin is unclear, other innate immune cells have been shown to be derived from early hemogenic endothelium in the yolk sac as well as the aorta-gonad-mesonephros. A proper model to discriminate between these locations was unavailable. In this study, using a Cxcr4-CreERT2 lineage tracing model, we identify a major contribution from embryonic hemogenic endothelium, but not the yolk sac, toward LTi progenitors. Conversely, embryonic LTi cells are replaced by hematopoietic stem cell-derived cells in adults. We further show that, in the fetal liver, common lymphoid progenitors differentiate into highly dynamic alpha-lymphoid precursor cells that, at this embryonic stage, preferentially mature into LTi precursors and establish their functional LTi cell identity only after reaching the periphery.


Assuntos
Hemangioblastos/metabolismo , Hematopoese/fisiologia , Tecido Linfoide/embriologia , Receptores CXCR4/metabolismo , Animais , Desenvolvimento Embrionário/fisiologia , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunidade Inata , Fígado/embriologia , Linfócitos/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Saco Vitelino/embriologia
4.
PLoS One ; 11(8): e0159564, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27548676

RESUMO

Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Códon/química , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Genética Reversa/métodos , Vacinas Virais/genética , Animais , Linhagem Celular , Códon/metabolismo , Cricetinae , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/mortalidade , Encefalite Transmitida por Carrapatos/virologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fases de Leitura Aberta , RNA Helicases/genética , RNA Helicases/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Análise de Sobrevida , Vacinas Atenuadas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
5.
PLoS One ; 10(9): e0138703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407018

RESUMO

Isolation of viral pathogens from clinical and/or animal samples has traditionally relied on either cell cultures or laboratory animal model systems. However, virus viability is notoriously susceptible to adverse conditions that may include inappropriate procedures for sample collection, storage temperature, support media and transportation. Using our recently described ISA method, we have developed a novel procedure to isolate infectious single-stranded positive-sense RNA viruses from clinical or animal samples. This approach, that we have now called "ISA-lation", exploits the capacity of viral cDNA subgenomic fragments to re-assemble and produce infectious viral RNA in susceptible cells. Here, it was successfully used to rescue enterovirus, Chikungunya and Tick-borne encephalitis viruses from a variety of inactivated animal and human samples. ISA-lation represents an effective option to rescue infectious virus from clinical and/or animal samples that may have deteriorated during the collection and storage period, but also potentially overcomes logistic and administrative difficulties generated when complying with current health and safety and biosecurity guidelines associated with shipment of infectious viral material.


Assuntos
Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Animais , Linhagem Celular , Humanos , Camundongos
6.
PLoS Pathog ; 11(3): e1004738, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25734338

RESUMO

Large-scale codon re-encoding (i.e. introduction of a large number of synonymous mutations) is a novel method of generating attenuated viruses. Here, it was applied to the pathogenic flavivirus, tick-borne encephalitis virus (TBEV) which causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. Using an infectious clone of the Oshima 5-10 strain ("wild-type virus"), a cassette of 1.4kb located in the NS5 coding region, was modified by randomly introducing 273 synonymous mutations ("re-encoded virus"). Whilst the in cellulo replicative fitness of the re-encoded virus was only slightly reduced, the re-encoded virus displayed an attenuated phenotype in a laboratory mouse model of non-lethal encephalitis. Following intra-peritoneal inoculation of either 2.105 or 2.106 TCID50 of virus, the frequency of viraemia, neurovirulence (measured using weight loss and appearance of symptoms) and neuroinvasiveness (detection of virus in the brain) were significantly decreased when compared with the wild-type virus. Mice infected by wild-type or re-encoded viruses produced comparable amounts of neutralising antibodies and results of challenge experiments demonstrated that mice previously infected with the re-encoded virus were protected against subsequent infection by the wild-type virus. This constitutes evidence that a mammalian species can be protected against infection by a virulent wild-type positive-stranded RNA virus following immunisation with a derived randomly re-encoded strain. Our results demonstrate that random codon re-encoding is potentially a simple and effective method of generating live-attenuated vaccine candidates against pathogenic flaviviruses.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/prevenção & controle , Vacinas Virais/genética , Animais , Modelos Animais de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia
7.
J Gen Virol ; 95(Pt 11): 2462-2467, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25053561

RESUMO

Reverse genetics is a key methodology for producing genetically modified RNA viruses and deciphering cellular and viral biological properties, but methods based on the preparation of plasmid-based complete viral genomes are laborious and unpredictable. Here, both wild-type and genetically modified infectious RNA viruses were generated in days using the newly described ISA (infectious-subgenomic-amplicons) method. This new versatile and simple procedure may enhance our capacity to obtain infectious RNA viruses from PCR-amplified genetic material.


Assuntos
Vírus de RNA/genética , Vírus de RNA/fisiologia , Genética Reversa/métodos , Animais , Linhagem Celular , Cricetinae , DNA Complementar/genética , DNA Viral/genética , Flavivirus/genética , Flavivirus/fisiologia , Genoma Viral , Humanos , Dados de Sequência Molecular , RNA Viral/genética , Replicação Viral/genética , Replicação Viral/fisiologia
8.
J Virol Methods ; 202: 101-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24642236

RESUMO

As a member of the European Virus Archive (EVA) consortium, our laboratory is developing and maintaining a large collection of viruses. This collection implies the use of a panel of cell lines originating from various animal species. In order to make easier the handling of such a large panel of cell lines, wide spectrum real-time PCR and RT-PCR assays were developed to allow the detection and the quantification of DNA and mRNA of ß-actin, one of the most commonly used eukaryotic housekeeping genes. By using two degenerated primers and a unique probe, these two assays were shown to detect nucleic acids of a panel of vertebrate and invertebrate cell lines commonly used in animal virology. This panel included human, monkey, rodent, dog, pig, fish, batrachian, mosquito and tick cell lines. Additionally, the two assays amplified successfully ß-actin-encoding sequences of sandflies. Sensitivity evaluation performed on synthetic DNA and RNA sequences showed that the two assays were very sensitive and suitable for accurate quantification. The two assays constitute together a convenient method suitable for multiple purposes. They can be used for instance to estimate the amount of contaminating cellular genetic material prior to sequence-independent amplification of viral genomes achieved before high-throughput sequencing, to evaluate the efficiency of DNase and/or RNase treatments performed on cellular extract and to check nucleic acid extraction by using ß-actin-encoding sequences as endogenous control. This assay will constitute a precious tool for virologists working with multiple cell lines or animal models.


Assuntos
Actinas/biossíntese , Actinas/genética , DNA/análise , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Virologia/métodos , Animais , Bancos de Espécimes Biológicos , Linhagem Celular , DNA/genética , Humanos , RNA Mensageiro/genética
9.
PLoS Pathog ; 9(2): e1003172, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23436995

RESUMO

Large-scale codon re-encoding represents a powerful method of attenuating viruses to generate safe and cost-effective vaccines. In contrast to specific approaches of codon re-encoding which modify genome-scale properties, we evaluated the effects of random codon re-encoding on the re-emerging human pathogen Chikungunya virus (CHIKV), and assessed the stability of the resultant viruses during serial in cellulo passage. Using different combinations of three 1.4 kb randomly re-encoded regions located throughout the CHIKV genome six codon re-encoded viruses were obtained. Introducing a large number of slightly deleterious synonymous mutations reduced the replicative fitness of CHIKV in both primate and arthropod cells, demonstrating the impact of synonymous mutations on fitness. Decrease of replicative fitness correlated with the extent of re-encoding, an observation that may assist in the modulation of viral attenuation. The wild-type and two re-encoded viruses were passaged 50 times either in primate or insect cells, or in each cell line alternately. These viruses were analyzed using detailed fitness assays, complete genome sequences and the analysis of intra-population genetic diversity. The response to codon re-encoding and adaptation to culture conditions occurred simultaneously, resulting in significant replicative fitness increases for both re-encoded and wild type viruses. Importantly, however, the most re-encoded virus failed to recover its replicative fitness. Evolution of these viruses in response to codon re-encoding was largely characterized by the emergence of both synonymous and non-synonymous mutations, sometimes located in genomic regions other than those involving re-encoding, and multiple convergent and compensatory mutations. However, there was a striking absence of codon reversion (<0.4%). Finally, multiple mutations were rapidly fixed in primate cells, whereas mosquito cells acted as a brake on evolution. In conclusion, random codon re-encoding provides important information on the evolution and genetic stability of CHIKV viruses and could be exploited to develop a safe, live attenuated CHIKV vaccine.


Assuntos
Vírus Chikungunya/genética , Códon/genética , Aptidão Genética , Genoma Viral/genética , Replicação Viral , Aedes/virologia , Infecções por Alphavirus/transmissão , Infecções por Alphavirus/virologia , Substituição de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Febre de Chikungunya , Vírus Chikungunya/crescimento & desenvolvimento , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Sequência Consenso , Evolução Molecular , Variação Genética , Humanos , Mutação , Primatas/virologia , RNA Viral/biossíntese , RNA Viral/genética , Análise de Sequência de DNA , Inoculações Seriadas , Células Vero , Proteínas Virais/biossíntese , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA