Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38816961

RESUMO

Clinical flow cytometry laboratories require quality control materials for assay development, validation, and performance monitoring, including new reagent lot qualification. However, finding suitable controls for populations with uncommonly expressed antigens or for rare populations, such as mast cells, can be difficult. To that end, we evaluated synthetic abnormal mast cell particles (SAMCP), developed together with, and manufactured by, Slingshot Biosciences. The SAMCP's were designed to phenotypically mimic abnormal neoplastic mast cells: they were customized to have the same light scatter and autofluorescence properties of mast cells, along with surface antigen levels of CD45, CD33, CD117, CD2, CD25, and CD30 consistent with that seen in mast cell disease. We evaluated several performance characteristics of these particles using ARUP's high sensitivity clinical mast cell assay, including limit of detection, off-target activity and FMO controls, precision, scatter properties of the particles utilizing several different cytometer platforms, and particle antigen stability. The phenotype of the SAMCP mimicked abnormal mast cells, and they could be distinguished from normal native mast cells. FMO controls demonstrated specificity of each of the markers, and no off-target binding was detected. The limit of detection of the particles spiked into normal bone marrow was found to be ≤0.003% in a limiting dilution assay. The mast cell particles were found to perform similarly on Becton Dickinson Lyric, Cytek Aurora, and Beckman Coulter Navios and CytoFLEX platforms. Within run and between run precision were less than 10% CV. SAMCP were stable up to 13 days with minimal loss of antigen fluorescence intensity. The SAMCP's were able to successfully mimic neoplastic mast cells based on the results of our high sensitivity mast cell flow cytometry panel. These synthetic cell particles represent an exciting and innovative technology, which can fulfill vital needs in clinical flow cytometry such as serving as standardized control materials for assay development and performance monitoring.

2.
Lab Chip ; 23(22): 4834-4847, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37853793

RESUMO

Integrating flowing cells, such as immune cells or circulating tumour cells, within a microphysiological system is crucial for body-on-a-chip applications. However, ensuring unimpeded recirculation of cells is a significant challenge. Closed microfluidic devices have a no-slip boundary condition along channel walls and a defined chip geometry (laminar flow) that hinders the ability to freely control cell flow. Open microfluidic devices, where the bottom device boundary is an air-liquid interface (ALI), e.g., hanging drop networks (HDNs), offer the advantage of an easily-actuatable fluid-phase geometry, where cells can either flow or stagnate. In this paper, we optimized a hanging-drop-integrated pneumatic-pump system for closed-loop recirculation of particles (i.e., beads or cells). Experiments with both beads and cells in cell culture medium initially resulted in particle stagnation, which was suggestive of a pseudo-no-slip boundary condition at the ALI. Transmission electron microscopy and dynamic light scattering measurements of the ALI suggested that aggregation of submicron-scale cell-culture-medium components is the cause of the pseudo-no-slip boundary condition. We used the finite element method to study the forces on particles at the ALI and to optimize HDN design (drop aperture) and operation (drop height) parameters. Based on this analysis, we report a phase diagram delineating the conditions for free flow or stagnation of particles at the ALI of hanging drops. Using our experimental setup with 3.5 mm drop apertures, we conducted particle flow experiments while actuating drop heights. We confirmed the ability to control the flow or stagnation of particles by actuating the height of hanging drops: a drop height over 300 µm led to particle stagnation and a drop height under 300 µm allowed for particle flow. This particle-flow control, combined with the ease of integrating scaffold-free organ models (microtissues or organoids) in HDNs, constitutes the basis for an experimental setup enabling the control of the residence time of single cells around 3D organ models.


Assuntos
Técnicas de Cultura de Células , Esferoides Celulares , Técnicas de Cultura de Células/métodos , Movimento Celular , Dispositivos Lab-On-A-Chip , Sistemas Microfisiológicos
3.
Adv Healthc Mater ; 12(6): e2202506, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651229

RESUMO

Despite increasing survival rates of pediatric leukemia patients over the past decades, the outcome of some leukemia subtypes has remained dismal. Drug sensitivity and resistance testing on patient-derived leukemia samples provide important information to tailor treatments for high-risk patients. However, currently used well-based drug screening platforms have limitations in predicting the effects of prodrugs, a class of therapeutics that require metabolic activation to become effective. To address this issue, a microphysiological drug-testing platform is developed that enables co-culturing of patient-derived leukemia cells, human bone marrow mesenchymal stromal cells, and human liver microtissues within the same microfluidic platform. This platform also enables to control the physical interaction between the diverse cell types. Herein, it is made possible to recapitulate hepatic prodrug activation of ifosfamide in their platform, which is very difficult in traditional well-based assays. By testing the susceptibility of primary patient-derived leukemia samples to the prodrug ifosfamide, sample-specific sensitivities to ifosfamide in primary leukemia samples are identified. The microfluidic platform is found to enable the recapitulation of physiologically relevant conditions and the testing of prodrugs including short-lived and unstable metabolites. The platform holds great potential for clinical translation and precision chemotherapy selection.


Assuntos
Leucemia , Pró-Fármacos , Humanos , Criança , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/metabolismo , Ifosfamida/farmacologia , Ifosfamida/uso terapêutico , Ifosfamida/metabolismo , Leucemia/metabolismo , Técnicas de Cocultura , Fígado/metabolismo
4.
Lab Chip ; 21(21): 4262-4273, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34617550

RESUMO

Droplet microfluidics is a commercially successful technology, widely used in single cell sequencing and droplet PCR. Combining droplet making with droplet sorting has also been demonstrated, but so far found limited use, partly due to difficulties in scaling manufacture with injection molded plastics. We introduce a droplet sorting system with several new elements, including: 1) an electrode design combining metallic and ionic liquid parts, 2) a modular, multi-sorting fluidic design with features for keeping inter-droplet distances constant, 3) using timing parameters calculated from fluorescence or scatter signal triggers to precisely actuate dozens of sorting electrodes, 4) droplet collection techniques, including ability to collect a single droplet, and 5) a new emulsion breaking method to collect aqueous samples for downstream analysis. We use these technologies to build a fluorescence based cell sorter that can sort with high (>90%) purity. We also show that these microfluidic designs can be translated into injection molded thermoplastic, suitable for industrial production. Finally, we tally the advantages and limitations of these devices.


Assuntos
Microfluídica , Água , Eletrodos , Emulsões , Citometria de Fluxo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA