Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Sci Rep ; 13(1): 16862, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803064

RESUMO

A model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actual ablation ground truth from a clinical dataset in liver. The biophysical model uses a simplified formulation of heat deposition on the applicator and a heat sink related to vasculature to solve the bioheat equation. A performance metric is defined to assess how the planned ablation overlaps the actual ground truth. Results demonstrate superiority of this model prediction compared to manufacturer tabulated data and a significant influence of the vasculature cooling effect. Nevertheless, vasculature shortage due to branches occlusion and applicator misalignment due to registration error between scans affects the thermal prediction. With a more accurate vasculature segmentation, occlusion risk can be estimated, whereas branches can be used as liver landmarks to improve the registration accuracy. Overall, this study emphasizes the benefit of a model-based thermal ablation solution in better planning the ablation procedures. Contrast and registration protocols must be adapted to facilitate its integration into the clinical workflow.


Assuntos
Técnicas de Ablação , Ablação por Cateter , Neoplasias Hepáticas , Ablação por Radiofrequência , Humanos , Micro-Ondas/uso terapêutico , Estudos Retrospectivos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Fígado/irrigação sanguínea , Neoplasias Hepáticas/cirurgia , Ablação por Cateter/métodos
3.
Res Sq ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131766

RESUMO

A model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actualablation ground truth from a clinical data set in liver. The biophysical model uses a simplified formulation of heat depositionon the applicator and a heat sink related to vasculature to solve the bioheat equation. A performance metric is defined toassess how the planned ablation overlaps the actual ground truth. Results demonstrate superiority of this model predictioncompared to manufacturer tabulated data and a significant influence of the vasculature cooling effect. Nevertheless, vasculatureshortage due to branches occlusion and applicator misalignment due to registration error between scans affects the thermalprediction. With a more accurate vasculature segmentation, occlusion risk can be estimated, whereas branches can be usedas liver landmarks to improve the registration accuracy. Overall, this study emphasizes the benefit of a model-based thermalablation solution in better planning the ablation procedures. Contrast and registration protocols must be adapted to facilitate itsintegration into the clinical workflow.

4.
Int J Hyperthermia ; 33(7): 796-809, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28540800

RESUMO

PURPOSE: Superficial tumours with deep infiltration in the upper 15 cm of the trunk cannot be treated adequately with existing hyperthermia systems. The aim of this study was to develop, characterise and evaluate a new flexible two-channel hyperthermia system (AMC-2) for tumours in this region. MATERIALS AND METHODS: The two-channel AMC-2 system has two horizontally revolving and height adjustable 70 MHz waveguides. Three different interchangeable antennas with sizes 20 × 34, 15 × 34 and 8.5 × 34 cm were developed and their electrical properties were determined. The performance of the AMC-2 system was tested by measurements of the electric field distribution in a saline water filled elliptical phantom, using an electric field vector probe. Clinical feasibility was demonstrated by treatment of a melanoma in the axillary region. RESULTS: Phantom measurements showed a good performance for all waveguides. The large reflection of the smallest antenna has to be compensated by increased forward power. Field patterns become asymmetrical when using smaller top antennas, necessitating phase corrections. The clinical application showed that tumours deeper than 4 cm can be heated adequately. A median tumour temperature of 42 °C can be reached up to 12 cm depth with adequate antenna positioning and phase-amplitude steering. CONCLUSIONS: This 70 MHz AMC-2 waveguide system is a useful addition to existing loco-regional hyperthermia equipment as it is capable of heating axillary tumours and other tumours deeper than 4 cm.


Assuntos
Hipertermia Induzida/instrumentação , Idoso , Humanos , Masculino , Melanoma/radioterapia , Melanoma/terapia , Neoplasias Cutâneas/radioterapia , Neoplasias Cutâneas/terapia
5.
Med Phys ; 44(3): 1071-1088, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28058731

RESUMO

PURPOSE: A major complication for abdominal High Intensity Focused Ultrasound (HIFU) applications is the obstruction of the acoustic beam path by the thoracic cage, which absorbs and reflects the ultrasonic energy leading to undesired overheating of healthy tissues in the pre-focal area. Prior work has investigated the determination of optimized transducer apodization laws, which allow for a reduced rib exposure whilst (partially) restoring focal point intensity through power compensation. Although such methods provide an excellent means of reducing rib exposure, they generally increase the local energy density in the pre-focal area, which similarly can lead to undesired overheating. Therefore, this numerical study aimed at evaluating whether a novel transducer design could provide improvement for intercostal HIFU applications, in particular with respect to the pre-focal area. METHODS: A combination of acoustic and thermal simulations was used to evaluate 2 mono-element transducers, 2 clinical phased array transducers, and 4 novel transducers based on Fermat's Spiral (FS), two of which were Voronoi-tessellated (VTFS). Binary apodizations were determined for the phased array transducers using a collision detection algorithm. A tissue geometry was modeled to represent an intercostal HIFU sonication in the liver at 30 and 50 mm behind the ribs, including subsequent layers of gel pad, skin, subcutaneous fat, muscle, and liver tissue. Acoustic simulations were then conducted using propagation of the angular spectrum of plane waves (ASPW). The results of these simulations were used to evaluate pre-focal intensity levels. Subsequently, a finite difference scheme based on the Pennes bioheat equation was used for thermal simulations. The results of these simulations were used to calculate both the energy density in the pre-focal skin, fat, and muscle layers, as well as the energy exposure of the ribs. RESULTS: The acoustic simulations showed that for a sonication in a single point without beamsteering, comparing the best performing clinical phased array in this study to an equivalent VTFS transducer, the maximum intensity in the focal point was increased from 19.0 to 27.0 W/mm2 for the sonication 30 mm behind the ribs, while the rib area exposed to ≥20 J/cm2 was reduced from 0.88 to 0.14 cm2 . For the sonication 50 mm behind the ribs, the maximum focal point intensity was increased from 13.4 to 21.5 W/mm2 , while the rib area exposed to ≥40 J/cm2 was lowered from 2.71 to 0.01 cm2 . The thermal simulations showed that for a circular sonication cell of 4 mm diameter in the transversal plane, sonication times for sonications 30/50 mm behind the ribs were reduced from 13.9 to 8.38 s/38.2 to 17.4 s, respectively. Energy density levels in the skin for these sonications were decreased from 5.28 to 2.22/9.45 to 3.78 J/mm2 . CONCLUSIONS: VTFS transducers are expected to provide improvement for intercostal HIFU applications compared to currently available clinical transducers, as they reduce both the energy density in the pre-focal zone and the energy exposure of the ribs. These characteristics allow for increasing either the re-sonication rate or the treatment volume per sonication.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Transdutores , Algoritmos , Simulação por Computador , Desenho de Equipamento , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Humanos , Fígado/cirurgia , Modelos Teóricos , Temperatura
6.
J Ther Ultrasound ; 4: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27478615

RESUMO

BACKGROUND: Previous studies demonstrated both pre-clinically and clinically the feasibility of magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablations in the liver. To overcome the associated problem of respiratory motion of the ablation area, general anesthesia (GA) and mechanical ventilation was used in conjunction with either respiratory-gated energy delivery or energy delivery during induced apnea. However, clinical procedures requiring GA are generally associated with increased mortality, morbidity, and complication rate compared to procedural sedation and analgesia (PSA). Furthermore, PSA is associated with faster recovery and an increased eligibility for non- and mini-invasive interventions. METHODS: In this study, we investigate both in an animal model and on a small patient group the kinetics of the diaphragm during free-breathing, when a tailored remifentanil/propofol-based PSA protocol inducing partial respiratory depression is used. Subsequently, we demonstrate in an animal study the compatibility of the resulting respiratory pattern of the PSA protocol with a gated HIFU ablation in the liver by direct comparison with gated ablations conducted under GA. Wilcoxon signed-rank tests were performed for statistical analysis of non-perfused and necrosed tissue volumes. Duty cycles (ratio or percentage of the breathing cycle with the diaphragm in its resting position, such that acoustic energy delivery with MR-HIFU was allowed) were statistically compared for both GA and PSA using student's t tests. RESULTS: In both animal and human experiments, the breathing frequency was decreased below 9/min, while maintaining stable vital functions. Furthermore an end-exhalation resting phase was induced by this PSA protocol during which the diaphragm is virtually immobile. Median non-perfused volumes, non-viable volumes based on NADH staining, and duty cycles were larger under PSA than under GA or equal. CONCLUSIONS: We conclude that MR-HIFU ablations of the liver under PSA are feasible and potentially increase the non-invasive nature of this type of intervention.

7.
Magn Reson Med ; 75(3): 1187-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25940426

RESUMO

PURPOSE: To investigate the effect of the aqueous and fatty tissue magnetic susceptibility distribution on absolute and relative temperature measurements as obtained directly from the water/fat (w/f) frequency difference. METHODS: Absolute thermometry was investigated using spherical phantoms filled with pork and margarine, which were scanned in three orthogonal orientations. To evaluate relative fat referencing, multigradient echo scans were acquired before and after heating pork tissue via high-intensity focused ultrasound (HIFU). Simulations were performed to estimate the errors that can be expected in human breast tissue. RESULTS: The sphere experiment showed susceptibility-related errors of 8.4 °C and 0.2 °C for pork and margarine, respectively. For relative fat referencing measurements, fat showed pronounced phase changes of opposite polarity to aqueous tissue. The apparent mean temperature for a numerical breast model assumed to be 37 °C was 47.2 ± 21.6 °C. Simulations of relative fat referencing for a HIFU sonication (ΔT = 29.7 °C) yielded a maximum temperature error of 6.6 °C compared with 2.5 °C without fat referencing. CONCLUSION: Variations in the observed frequency difference between water and fat are largely due to variations in the w/f spatial distribution. This effect may lead to considerable errors in absolute MR thermometry. Additionally, fat referencing may exacerbate rather than correct for proton resonance frequency shift-temperature measurement errors.


Assuntos
Gorduras/química , Imageamento por Ressonância Magnética/métodos , Termografia/métodos , Água/química , Mama/diagnóstico por imagem , Simulação por Computador , Feminino , Humanos , Modelos Biológicos , Imagens de Fantasmas
8.
Phys Med Biol ; 60(19): 7729-45, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26394264

RESUMO

The multi-gradient echo MR thermometry (MGE MRT) method is proposed to use at the interface of the muscle and fat layers found in the abdominal wall, to monitor MR-HIFU heating. As MGE MRT uses fat as a reference, it is field-drift corrected. Relative temperature maps were reconstructed by subtracting absolute temperature maps. Because the absolute temperature maps are reconstructed of individual scans, MGE MRT provides the flexibility of interleaved mapping of temperature changes between two arbitrary time points. The method's performance was assessed in an ex vivo water bath experiment. An ex vivo HIFU experiment was performed to show the method's ability to monitor heating of consecutive HIFU sonications and to estimate cooling time constants, in the presence of field drift. The interleaved use between scans of a clinical protocol was demonstrated in vivo in a patient during a clinical uterine fibroid treatment. The relative temperature measurements were accurate (mean absolute error 0.3 °C) and provided excellent visualization of the heating of consecutive HIFU sonications. Maps were reconstructed of estimated cooling time constants and mean ROI values could be well explained by the applied heating pattern. Heating upon HIFU sonication and subsequent cooling could be observed in the in vivo demonstration.


Assuntos
Músculos Abdominais/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Sonicação/métodos , Gordura Subcutânea Abdominal/cirurgia , Termometria/métodos , Músculos Abdominais/fisiologia , Músculos Abdominais/efeitos da radiação , Calefação , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Humanos , Gordura Subcutânea Abdominal/fisiologia , Gordura Subcutânea Abdominal/efeitos da radiação , Temperatura
9.
Ultrasound Med Biol ; 41(6): 1726-36, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25843516

RESUMO

High-intensity focused ultrasound allows for minimally invasive, highly localized cancer therapies that can complement surgical procedures or chemotherapy. For high-intensity focused ultrasound interventions in the upper abdomen, the thoracic cage obstructs and aberrates the ultrasonic beam, causing undesired heating of healthy tissue. When a phased array therapeutic transducer is used, such complications can be minimized by applying an apodization law based on analysis of beam path obstructions. In this work, a rib detection method based on cavitation-enhanced ultrasonic reflections is introduced and validated on a porcine tissue sample containing ribs. Apodization laws obtained for different transducer positions were approximately 90% similar to those obtained using image analysis. Additionally, the proposed method provides information on attenuation between transducer elements and the focus. This principle was confirmed experimentally on a polymer phantom. The proposed methods could, in principle, be implemented in real time for determination of the optimal shot position in intercostal high-intensity focused ultrasound therapy.


Assuntos
Costelas/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Imagens de Fantasmas , Reprodutibilidade dos Testes , Suínos , Transdutores , Ultrassonografia/instrumentação
10.
Invest Radiol ; 50(1): 24-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25198833

RESUMO

OBJECTIVES: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) allows for noninvasive thermal ablation under real-time temperature imaging guidance. The purpose of this study was to assess the feasibility and safety of MR-HIFU ablation of liver tissue in a clinically acceptable setting. The experimental protocol was designed with a clinical ablation procedure of a small malignant tumor in mind; the procedures were performed within a clinically feasible time frame and care was taken to avoid adverse events. The main outcome was the size and quality of the ablated liver tissue volume on imaging and histology. Secondary outcomes were safety and treatment time. MATERIALS AND METHODS: Healthy pigs (n = 10) under general anesthesia were positioned on a clinical MR-HIFU system, which consisted of an HIFU tabletop with a skin cooling system integrated into a 1.5-T MR scanner. A liver tissue volume was ablated with multiple sonication cells (4 × 4 × 10 mm, 450 W). Both MR thermometry and sonication were respiratory-gated using a pencil beam navigator on the diaphragm. Contrast-enhanced T1-weighted (CE-T1w) imaging was performed for treatment evaluation. Targeted total treatment time was 3 hours. The abdominal wall, liver, and adjacent organs were inspected postmortem for thermal damage. Ablated tissue volumes were processed for cell viability staining. The ablated volumes were analyzed using MR imaging, MR thermometry, and cell viability histology. RESULTS: Eleven volume ablations were performed in 10 animals, resulting in a median nonperfused volume (NPV) on CE-T1w imaging of 1.6 mL (interquartile range [IQR], 0.8-2.3; range, 0.7-3.0). Cell viability histology showed a damaged volume of 1.5 mL (IQR, 1.1-1.8; range, 0.7-2.3). The NPV was confluent in 10 of the 11 cases. The ablated tissue volume on cell viability histology was confluent in all 9 available cases. In all cases, there was a good correspondence between the aspects of the NPV on CE-T1w and the ablated volume on cell viability histology. Two treatment-related adverse events occurred: 1 animal had a 7-mm skin burn and 1 animal showed evidence of thermal damage on the surface of the spleen. Median ablation time was 108 minutes (IQR, 101-120; range, 96-181 minutes) and median total treatment time was 180 minutes (IQR, 165-224; 130-250 minutes). CONCLUSIONS: Our results demonstrate the feasibility and safety of MR-HIFU ablation of liver tissue volumes. The imaging data and cell viability histology show, for the first time, that confluent ablation volumes can be achieved with motion-gated ablation and MR guidance. These results were obtained using a readily available MR-HIFU system with only minor modifications, within a clinically acceptable time frame, and with only minor adverse events. This shows that this technique is sufficiently reliable and safe to initiate a clinical trial.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Fígado/cirurgia , Imagem por Ressonância Magnética Intervencionista/métodos , Animais , Estudos de Viabilidade , Feminino , Modelos Animais , Suínos
11.
J Acoust Soc Am ; 136(3): 1430, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190416

RESUMO

An algorithm is presented for rapid simulation of high-intensity focused ultrasound (HIFU) fields. Essentially, the method combines ray tracing with Monte Carlo integration to evaluate the Rayleigh-Sommerfeld integral. A large number of computational particles, phonons, are distributed among the elements of a phase-array transducer. The phonons are emitted into random directions and are propagated along trajectories computed with the ray tracing method. As the simulation progresses, an improving stochastic estimate of the acoustic field is obtained. The method can adapt to complicated geometries, and it is well suited to parallelization. The method is verified against reference simulations and pressure measurements from an ex vivo porcine thoracic tissue sample. Results are presented for acceleration with graphics processing units (GPUs). The method is expected to serve in applications, where flexibility and rapid computation time are crucial, in particular clinical HIFU treatment planning.

12.
Acad Radiol ; 21(12): 1597-602, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25126972

RESUMO

RATIONALE AND OBJECTIVES: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of tumors in the liver dome is challenging because of the presence of air in the costophrenic angle. In this study, we used a porcine liver model and a clinical MR-HIFU system to assess the feasibility and safety of using intrapleural fluid infusion (IPI) to create an acoustic window for MR-HIFU ablation in the liver dome. MATERIALS AND METHODS: Healthy adult Dalland land pigs (n = 6) under general anesthesia were used with animal committee approval. Degassed saline (200-800 mL) was infused into the intrapleural space under ultrasound guidance. A clinical 1.5-T MR-HIFU system was used to perform sonications (4-mm treatment cells, 300-450 W, 20-30 seconds) in the liver dome under real-time MR thermometry. An intercostal firing technique was used to prevent rib heating in one experiment. Technical success was defined as a temperature increase (>10°C) in the target area. After termination, the animal was examined for thermal damage to liver, diaphragm, pleura, lung, or intercostal muscle. RESULTS: An acoustic window was established in all animals. A temperature increase in the target area was achieved in all animals (max. 47°C-67°C). MR thermometry showed no heating outside the target area. Intercostal firing effectively reduced rib heating (55°C vs. 42°C). Postmortem examination revealed no unwanted thermal damage. One complication occurred, in the first experiment, because of an ill-suited needle (displacement of the needle). CONCLUSIONS: The results indicate that IPI may be used safely to assist MR-HIFU ablation of tumors in the liver dome. For reliable tissue coagulation, IPI must be combined with an intercostal sonication technique. Considering the proportion of patients with tumors in the liver dome, IPI widens the applicability of MR-HIFU ablation for liver tumors considerably.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Fígado/cirurgia , Imagem por Ressonância Magnética Intervencionista/métodos , Cloreto de Sódio/administração & dosagem , Animais , Estudos de Viabilidade , Imageamento Tridimensional , Pleura , Suínos
13.
Magn Reson Med ; 72(4): 1057-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24259459

RESUMO

PURPOSE: During MR-guided high-intensity focused ultrasound (HIFU) therapy, ultrasound absorption in the near field represents a safety risk and limits efficient energy deposition at the target. In this study, we investigated the feasibility of using T2 mapping to monitor the temperature change in subcutaneous adipose tissue layers. METHODS: The T2 temperature dependence and reversibility was determined for fresh adipose porcine samples. The accuracy was evaluated by comparing T2 -based temperature measurements with probe readings in an ex vivo HIFU experiment. The in vivo feasibility of T2 -based thermometry was studied during HIFU ablations in the liver in pigs and of uterine fibroids in human patients. RESULTS: T2 changed linearly and reversibly with temperature with an average coefficient of 5.2 ± 0.1 ms/°C. For the ex vivo HIFU experiment, the difference between the T2 -based temperature change and the probe temperature was <0.9°C. All in vivo experiments showed temperature-related T2 changes in the near field directly after sonications. As expected, considerable intersubject variations in the cooling times were measured in the in vivo porcine experiments. CONCLUSIONS: The reversibility and linearity of the T2 -temperature dependence of adipose tissue allows for the monitoring of the temperature in the subcutaneous adipose tissue layers.


Assuntos
Tecido Adiposo/fisiologia , Tecido Adiposo/cirurgia , Temperatura Corporal/fisiologia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Termografia/métodos , Tecido Adiposo/efeitos da radiação , Animais , Temperatura Corporal/efeitos da radiação , Feminino , Ondas de Choque de Alta Energia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Cirurgia Assistida por Computador/métodos , Suínos
14.
Magn Reson Med ; 72(6): 1580-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24347129

RESUMO

PURPOSE: In this study, we aim to demonstrate the sensitivity of proton resonance frequency shift (PRFS) -based thermometry to heat-induced magnetic susceptibility changes and to present and evaluate a model-based correction procedure. THEORY AND METHODS: To demonstrate the expected temperature effect, field disturbances during high intensity focused ultrasound sonications were monitored in breast fat samples with a three-dimensional (3D) gradient echo sequence. To evaluate the correction procedure, the interface of tissue-mimicking ethylene glycol gel and fat was sonicated. During sonication, the temperature was monitored with a 2D dual flip angle multi-echo gradient echo sequence, allowing for PRFS-based relative and referenced temperature measurements in the gel and T1 -based temperature measurements in fat. The PRFS-based measurement in the gel was corrected by minimizing the discrepancy between the observed 2D temperature profile and the profile predicted by a 3D thermal model. RESULTS: The HIFU sonications of breast fat resulted in a magnetic field disturbance which completely disappeared after cooling. For the correction method, the 5th to 95th percentile interval of the PRFS-thermometry error in the gel decreased from 3.8°C before correction to 2.0-2.3°C after correction. CONCLUSION: This study has shown the effects of magnetic susceptibility changes induced by heating of breast fatty tissue samples. The resultant errors can be reduced by the use of a model-based correction procedure.


Assuntos
Tecido Adiposo/fisiologia , Tecido Adiposo/cirurgia , Artefatos , Temperatura Corporal/fisiologia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Termografia/métodos , Tecido Adiposo/efeitos da radiação , Algoritmos , Temperatura Corporal/efeitos da radiação , Mama/fisiologia , Mama/cirurgia , Erros de Diagnóstico , Relação Dose-Resposta à Radiação , Ondas de Choque de Alta Energia , Temperatura Alta , Humanos , Técnicas In Vitro , Mastectomia/métodos , Erros Médicos , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Magn Reson Med ; 69(5): 1476-85, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22760930

RESUMO

Patient-specific radiofrequency shimming in high-field MRI strengthens the need for online, patient-specific specific absorption rate (SAR) monitoring. Numerical simulation is currently most effective for this purpose but may require a patient-specific dielectric model. To investigate whether a generic model may be combined with a safety factor to account for variation within the population, generic SAR behavior is studied for 7T MRI of the head. For six detailed head models, radiofrequency fields were simulated for an eight-channel parallel transmit array. SAR behavior is studied through comparison of the eigenvalues/eigenvectors of the local Q-matrices. Furthermore, numerical radiofrequency shimming experiments without and with SAR constraints were performed where SAR during optimization was evaluated on a generic model. In both cases, the ability of different generic models to predict actual SAR levels was evaluated. The largest eigenvalue distribution is comparable between models. Radiofrequency shimming without constraints improves the |B +1| homogeneity while the SAR increases substantially. Imposing constraints on SAR during optimization, estimating SAR on a generic model, was effective. A safety factor of 1.4 was found to be sufficient. Generic SAR behavior makes a generic head model a practical alternative to patient-specific models and allows effective |B +1| shimming with SAR constraints.


Assuntos
Cabeça/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Radiometria/métodos , Absorção , Carga Corporal (Radioterapia) , Simulação por Computador , Cabeça/efeitos da radiação , Doses de Radiação
16.
Int J Hyperthermia ; 26(4): 376-88, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20230249

RESUMO

INTRODUCTION: Motivation for this research was a patient with large and bulky melanoma lesions on a leg, treated with hyperthermia in a special set-up with an open water bolus and two opposing applicators. Treatment planning was used to find the most suitable heating method, comparing 70 MHz capacitive contact flexible microstrip applicators (CFMAs) and 70 MHz waveguides. METHODS: The first three sessions were performed with CFMA applicators; the last session with waveguides. Power and water temperature were adjusted to achieve clinically relevant temperatures. Finite difference time domain (FDTD) simulations were performed for a CFMA and waveguide on a fat-muscle geometry to compare effective field size (EFS) and effective heating depth (EHD). A CT scan of the patient's leg was automatically segmented into muscle, fat and bone; tumour lesions were outlined manually. Patient simulations were performed to evaluate the 3D heating pattern and to compare CFMAs and waveguides for equal power and water temperature. RESULTS: Hyperthermia treatment was well tolerated. Temperature measurements indicated mainly superficial heating with CFMAs. Simulated EHD was 2.1 and 2.4 cm for CFMA and waveguide, respectively and EFS was 19.6 x 16.2 cm(2) and 19.4 x 16.3 cm(2). Simulation results confirmed the better performance of the waveguides. For normal amounts of fat tissue, approximately twice as much power is absorbed in fat with CFMAs compared to waveguides. [corrected] Simulations showed that a relatively high water temperature ( approximately 42 degrees C) improves the overall temperature distribution. CONCLUSION: CFMAs and waveguides have a similar EFS and EHD, but for large extremity lesions, the performance of 70 MHz waveguides is favourable compared to 70 MHz CFMA applicators.


Assuntos
Simulação por Computador , Hipertermia Induzida/instrumentação , Perna (Membro)/patologia , Melanoma/terapia , Algoritmos , Temperatura Corporal/efeitos da radiação , Eletrodos , Evolução Fatal , Humanos , Hipertermia Induzida/efeitos adversos , Hipertermia Induzida/métodos , Masculino , Melanoma/patologia , Melanoma/radioterapia , Pessoa de Meia-Idade , Imagens de Fantasmas , Terapia por Radiofrequência , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Falha de Tratamento
17.
Int J Hyperthermia ; 26(2): 171-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20146571

RESUMO

INTRODUCTION: Contact flexible microstrip applicators (CFMA) are applied for superficial hyperthermia. In the clinic these flexible applicators are mostly applied bent along the body curvature. This paper investigates the specific absorption rate (SAR) patterns of CFMA applicators, when bent around an elliptical tissue-equivalent phantom. METHODS: The 2H (aperture size 14.8 x 14.3 cm(2)), 3H (28.7 x 20.7 cm(2)), 4H (19.6 x 19.6 cm(2)) and 5H (19.7 x 28.5 cm(2)) applicators were examined. Measurements were performed for the 5H applicator; existing measurement data were analysed for the 3H applicator. Finite difference time domain (FDTD) simulations with a resolution of 2 x 2 x 1 mm(3) were performed for all applicators. Applicators were bent around the top and the side of the elliptical phantom to examine different curvatures. The SAR deposition, effective field size (EFS) and effective heating depth (EHD) were evaluated and compared to results for straight applicators. RESULTS: Bending the applicators generally yielded a focusing effect of the SAR, which was most pronounced with a strong curvature, but especially the 5H applicator showed a stronger power absorption at the sides of the applicator, compared to the centre region. The EFS became smaller when bending the applicators; this effect was also more pronounced for a strong curvature. The EHD increased for bent applicators, but the degree depended strongly on the location. CONCLUSION: The behaviour of bent CFMA applicators is not trivial and the SAR deposition is not similar for all applicators. The EFS decreases and the EHD increases, but very locally. Therefore, it is generally advisable to analyse the SAR distribution of flexible applicators in both straight and bent state.


Assuntos
Hipertermia Induzida , Imagens de Fantasmas , Absorção , Eletrodos , Desenho de Equipamento , Humanos , Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos
18.
Int J Hyperthermia ; 25(6): 462-76, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19657850

RESUMO

INTRODUCTION: Contact flexible microstrip applicators (CFMA), operating at 434 MHz, are applied at the Academic Medical Center (AMC) for superficial hyperthermia (e.g. chest wall recurrences and melanoma). This paper investigates the performance of CFMA, evaluating the stability of the specific absorption rate (SAR) distribution, effective heating depth (EHD) and effective field size (EFS) under different conditions. METHODS: Simulations were performed using finite differences and were compared to existing measurement data, performed using a rectangular phantom with a superficial fat-equivalent layer of 1 cm and filled with saline solution. The electrode plates of the applicators measure approximately 7 x 20, 29 x 21 and 20 x 29 cm(2). Bolus thickness varied between 1 and 2 cm. The impact of the presence of possible air layers between the rubber frame and the electrodes on the SAR distribution was investigated. RESULTS: The EHD was approximately 1.4 cm and the EFS ranged between approximately 60 and approximately 300 cm(2), depending on the applicator type. Both measurements and simulations showed a split-up of the SAR focus with a 2 cm water bolus. The extent and location of air layers has a strong influence on the shape and size of the iso-SAR contours with a value higher than 50%, but the impact on EFS and EHD is limited. CONCLUSION: Simulations, confirmed by measurements, showed that the presence of air between the rubber and the electrodes changes the iso-SAR contours, but the impact on the EFS and EHD is limited.


Assuntos
Hipertermia Induzida/instrumentação , Ar , Simulação por Computador , Eletrodos , Humanos , Modelos Teóricos , Imagens de Fantasmas
19.
IEEE Trans Biomed Eng ; 56(12): 2917-26, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19695983

RESUMO

Hyperthermia is a powerful radiosensitizer for treatment of superficial tumors. This requires body conformal antennas with a power distribution as homogeneous as possible over the skin area. The contact flexible microstrip applicators (CFMA) operating at 434 MHz exist in several sizes, including the large size 3H and 5H. This paper investigates the behavior of the electromagnetic fields for the 3H and 5H CFMA in both flat and curved configurations, and the impact on performance parameters like the penetration depth (PD) and the effective heating depth (EHD). The underlying theory behind the electromagnetic behavior in curved situations is presented as well as numerical simulations of both flat and curved configurations. The results are compared to measurements of the electromagnetic field distributions in a cylindrical patient model. Due to their large size multimode solutions may exist, and our results confirm their existence. These multimode solutions affect both the power distribution and PD/EHD, with a dependence on applicator curvature. Therefore, the performance parameters like PD and EHD need to be carefully assessed when bending large size CFMA applicators to conform to the patient body. This conclusion also holds for other types of large size surface current applicators.


Assuntos
Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos , Microeletrodos , Modelos Biológicos , Terapia Assistida por Computador/métodos , Simulação por Computador , Desenho Assistido por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA