Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 281(18): 4029-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24976038

RESUMO

Molecular replacement, one of the general methods used to solve the crystallographic phase problem, relies on the availability of suitable models for placement in the unit cell of the unknown structure in order to provide initial phases. ARCIMBOLDO, originally conceived for ab initio phasing, operates at the limit of this approach, using small, very accurate fragments such as polyalanine α-helices. A distant homolog may contain accurate building blocks, but it may not be evident which sub-structure is the most suitable purely from the degree of conservation. Trying out all alternative possibilities in a systematic way is computationally expensive, even if effective. In the present study, the solution of the previously unknown structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli, is described. The asymmetric unit contains a dimer of this 194 amino acid protein. The closest available homolog was the catalytic domain of Slt70 (PDB code 1QTE). Originally, this template was used omitting contiguous spans of aminoacids and setting as many ARCIMBOLDO runs as models, each aiming to locate two copies sequentially with PHASER. Fragment trimming against the correlation coefficient prior to expansion through density modification and autotracing in SHELXE was essential. Analysis of the figures of merit led to the strategy to optimize the search model against the experimental data now implemented within ARCIMBOLDO-SHREDDER (http://chango.ibmb.csic.es/SHREDDER). In this strategy, the initial template is systematically shredded, and fragments are scored against each unique solution of the rotation function. Results are combined into a score per residue and the template is trimmed accordingly.


Assuntos
Proteínas de Escherichia coli/química , Glicosiltransferases/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Software , Sequência de Aminoácidos , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Escherichia coli/enzimologia , Dados de Sequência Molecular , Muramidase/química , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
2.
Nat Methods ; 10(11): 1099-101, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24037245

RESUMO

We describe an algorithm for phasing protein crystal X-ray diffraction data that identifies, retrieves, refines and exploits general tertiary structural information from small fragments available in the Protein Data Bank. The algorithm successfully phased, through unspecific molecular replacement combined with density modification, all-helical, mixed alpha-beta, and all-beta protein structures. The method is available as a software implementation: Borges.


Assuntos
Cristalografia/métodos , Dobramento de Proteína , Estrutura Terciária de Proteína , Algoritmos , Bases de Dados de Proteínas , Modelos Moleculares
3.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 4): 336-43, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22505254

RESUMO

Since its release in September 2009, the structure-solution program ARCIMBOLDO, based on the combination of locating small model fragments such as polyalanine α-helices with density modification with the program SHELXE in a multisolution frame, has evolved to incorporate other sources of stereochemical or experimental information. Fragments that are more sophisticated than the ubiquitous main-chain α-helix can be proposed by modelling side chains onto the main chain or extracted from low-homology models, as locally their structure may be similar enough to the unknown one even if the conventional molecular-replacement approach has been unsuccessful. In such cases, the program may test a set of alternative models in parallel against a specified figure of merit and proceed with the selected one(s). Experimental information can be incorporated in three ways: searching within ARCIMBOLDO for an anomalous fragment against anomalous differences or MAD data or finding model fragments when an anomalous substructure has been determined with another program such as SHELXD or is subsequently located in the anomalous Fourier map calculated from the partial fragment phases. Both sources of information may be combined in the expansion process. In all these cases the key is to control the workflow to maximize the chances of success whilst avoiding the creation of an intractable number of parallel processes. A GUI has been implemented to aid the setup of suitable strategies within the various typical scenarios. In the present work, the practical application of ARCIMBOLDO within each of these scenarios is described through the distributed test cases.


Assuntos
Cristalografia por Raios X/métodos , Algoritmos , Modelos Moleculares
4.
Nat Methods ; 6(9): 651-3, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19684596

RESUMO

Ab initio macromolecular phasing has been so far limited to small proteins diffracting at atomic resolution (beyond 1.2 A) unless heavy atoms are present. We describe a general ab initio phasing method for 2 A data, based on combination of localizing model fragments such as small á-helices with Phaser and density modification with SHELXE. We implemented this approach in the program Arcimboldo to solve a 222-amino-acid structure at 1.95 A.


Assuntos
Proteínas/química , Cristalografia/métodos , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA