Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133276, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128232

RESUMO

Microplastic and nanoplastic research has proliferated in recent years in response to the escalating plastic pollution crisis. However, a lack of optimised methods for sampling and sample processing has potential implications for contaminating samples resulting in an overestimation of the quantity of microplastics and nanoplastics present in environmental samples. In response, a series of recommendations have been made, but most have not been quantified or validated sources of contamination. In the present study, we investigated sources of plastic contamination in common laboratory procedures including water sources (e.g., Milli-Q), consumables (e.g., unburnt glassware), airflow (e.g., fume hood) and dust. Using flow cytometry, we identified water, air flow and dust as sources of significant contamination. Milli-Q and reverse osmosis were the least contaminated sources when compared with tap water. Interestingly, current recommendations are to use glass consumables in replacement of plastic consumables, however, we have identified glassware and glass consumables as a significant source of contamination. Current best practice is to cover the glass tube with aluminium foil to reduce airborne contamination, but we found fresh aluminium foil to be a significant source of contamination, bringing light to the limitations foil has as a contamination control measure. Lastly, we identified significant quantities of microplastics and nanoplastics present in dust collected within the laboratory, suggesting this is a widespread and underestimated source of contamination. We have provided validated sources of contamination for both consumables and common laboratory procedures and provided mitigation strategies based on these. Additional recommendations include the appropriate design of experimental controls to quantify levels of introduced contamination based on methods and the detection techniques utilised. The application of these mitigation strategies and appropriate experimental design will allow for more accurate estimations on the level of microplastic and nanoplastic contamination within environmental samples.

2.
Environ Pollut ; 336: 122459, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633432

RESUMO

The global impact of pollution on human and wildlife health is a growing concern. The health impacts of pollution are significant and far-reaching yet poorly understood as no one field of research has the practices and methodologies required to encapsulate the diversity of these consequences. This paper advocates that interdisciplinary research is essential to comprehend the full extent of the impact of pollution. Medical and ecological research play a key role in investigating the health consequences of the pollution crisis, yet the wildlife experience is often neglected. This paper outlines how applying advanced techniques and expertise adapted in medical research to wildlife exposed to pollutants offers a unique perspective to understanding the full diversity of impacts to health. The challenges that impede the progress of this research include the lack of support for interdisciplinary research among funding streams, limitations in field-specific techniques, and a lack of communication between researchers from different disciplines. Of awarded funding from major national research councils across Australia, Europe, and the United States of America, only 0.5% is dedicated to pollution focused research. This is inclusive of laboratory equipment, mitigation strategies, quantification of environmental samples and health consequences research. Of that, 0.03% of funding is awarded to explaining the wildlife experience and documenting the health consequences observed despite being model organisms to environmentally and biologically relevant models for pollution exposure. This calls for a coordinated effort to overcome these hurdles and to promote interdisciplinary research in order to fully comprehend the consequences of pollution exposure and protect the health of humans, wildlife, and the environment. An interdisciplinary approach to this problem is timely given the magnitude of negative health consequences associated with exposure, the number of pollutants already present within the environment and the continual development of new compounds.

3.
Mar Pollut Bull ; 184: 114096, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113176

RESUMO

Plastic is an omnipresent pollutant in marine ecosystems and is widely documented to be ingested among seabird species. Procellariiformes are particularly vulnerable to plastic ingestion, which can cause internal damage, starvation, and occasionally mortality. In this study, 34 fledgling Fairy Prions (Pachyptila turtur) recovered during a wreck event in south-eastern Tasmania in 2022 were examined for ingested plastics and body condition (e.g., wing chord length). While many of the birds exhibited poor body condition, this was not correlated with the count or mass of ingested plastics. We hypothesise the marine heatwave event, and resulting lack of prey, contributed to bird body condition and subsequent mortality. We provide some of the first data on the size of individual plastic particles ingested by seabirds and make recommendations for future studies to report this important metric in a consistent manner that ensures data are comparable.


Assuntos
Poluentes Ambientais , Príons , Animais , Plásticos , Conteúdo Gastrointestinal/química , Ecossistema , Tasmânia , Monitoramento Ambiental/métodos , Ingestão de Alimentos , Aves , Resíduos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA