Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(8): 1547-1556, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966795

RESUMO

Ora-pro-nobis (OPN) is an unconventional food plant with high nutritional value, and its nutritional composition can be altered according to cultivation. Cereal bars are a popular nutrient-poor foods, and OPN could be incorporated to improve the nutritional quality. This study aimed to evaluate the physicochemical characteristics and sensory acceptability of cereal bars enriched with OPN flour (OpnF) from different forms of cultivation. OpnF was obtained by dehydrating and grinding OPN leaves collected in rural (ROpnF) and urban (UOpnF) municipalities. Two formulations of cereal bars, peanut flavor (Bpn) and mango flavor (Bmg), each with 10% OpnF, were prepared. The macronutrients and mineral composition, oxalate content, water activity, texture, color profile, and acceptability were evaluated. ROpnF had the highest protein, iron, and manganese content, whereas UOpnF had the highest ash and magnesium content. The oxalic acid/calcium ratio was 1.43 and did not imply calcium bioavailability. In addition to nutritional and protein values, Bpn and Bmg presented a good sensory acceptability index of > 77.5% with market potential. Bmg has the highest mineral content and is a source of iron, manganese, and magnesium. OpnF can be used in cereal bars and potentially improve nutritional attributes and used in other foods in a similar way.

2.
Biometals ; 35(6): 1281-1297, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36255608

RESUMO

Worldwide, cosmetics (especially eye shadows) are widely consumed and have a great impact on the economy. The aim of this study was to determine the multielement composition, focusing on essential and potentially toxic elements, in cosmetics (eye shadow) exposed to consumption in Brazil. Concentrations of 17 elements (Al, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, V and Zn) were determined in samples (produced in China and Brazil) using a sequential optical emission spectrometer with inductively coupled plasma (ICP OES) after acid digestion, assisted by a closed digester block (6 mL of HNO3 + 2 mL of H2O2 + 1 mL of Triton ×-100 + 1 mL of ultrapure water). The method was validated by linearity, precision, accuracy, limits of detection (LoD) and quantification (LoQ). The elements were quantified (in µg g-1): Al (852-21,900), Ba (3.47-104), Cd (1.70-6.93), Cr (< 8.53-66.6), Cu (< 0.480-14.5), Mn (92.20-1,190), Ni (< 4.23-40.7), Pb (< 2.16-5.06), Sb (1.10-10.5), Sr (0.760-46.0), Ti (32.0-440), V (< 0.85-1.7) and Zn (24.90-2,600). As, Co, Mo and Se in all the investigated samples were found to be below the LoQ values of ICP OES. In this study, regardless of sample compositions and origins (Brazilian or Chinese), high levels of Al, Cd, Cr, Cu, Mn, Ni, Pb, Sb, Ti, V and Zn were observed, exceeding the recommended maximum tolerable limits, according to Brazilian and global legislations, which may present potential risks to human health and the environment.


Assuntos
Oligoelementos , Humanos , Oligoelementos/análise , Brasil , Cádmio , Peróxido de Hidrogênio , Chumbo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA