Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 164(4): 1952-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24532604

RESUMO

KNOTTED1-LIKE HOMEOBOX (KNOX) genes are important regulators of meristem function, and a complex network of transcription factors ensures tight control of their expression. Here, we show that members of the GROWTH-REGULATING FACTOR (GRF) family act as players in this network. A yeast (Saccharomyces cerevisiae) one-hybrid screen with the upstream sequence of the KNOX gene Oskn2 from rice (Oryza sativa) resulted in isolation of OsGRF3 and OsGRF10. Specific binding to a region in the untranslated leader sequence of Oskn2 was confirmed by yeast and in vitro binding assays. ProOskn2:ß-glucuronidase reporter expression was down-regulated by OsGRF3 and OsGRF10 in vivo, suggesting that these proteins function as transcriptional repressors. Likewise, we found that the GRF protein BGRF1 from barley (Hordeum vulgare) could act as a repressor on an intron sequence in the KNOX gene Hooded/Barley Knotted3 (Bkn3) and that AtGRF4, AtGRF5, and AtGRF6 from Arabidopsis (Arabidopsis thaliana) could repress KNOTTED-LIKE FROM ARABIDOPSIS THALIANA2 (KNAT2) promoter activity. OsGRF overexpression phenotypes in rice were consistent with aberrant meristematic activity, showing reduced formation of tillers and internodes and extensive adventitious root/shoot formation on nodes. These effects were associated with down-regulation of endogenous Oskn2 expression by OsGRF3. Conversely, RNA interference silencing of OsGRF3, OsGRF4, and OsGRF5 resulted in dwarfism, delayed growth and inflorescence formation, and up-regulation of Oskn2. These data demonstrate conserved interactions between the GRF and KNOX families of transcription factors in both monocot and dicot plants.


Assuntos
Arabidopsis/metabolismo , Hordeum/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , DNA de Plantas/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Glucuronidase/metabolismo , Especificidade de Órgãos/genética , Oryza/genética , Oryza/ultraestrutura , Fenótipo , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Regulação para Cima
2.
Plant Mol Biol ; 66(1-2): 87-103, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17999151

RESUMO

The homeodomain leucine zipper (HD-Zip) genes encode transcription factors that have diverse functions in plant development and have often been implicated in stress adaptation. The HD-Zip genes are the most abundant group of homeobox (HB) genes in plants and do not occur in other eukaryotes. This paper describes the complete annotation of the HD-Zip families I, II and III from rice and compares these gene families with Arabidopsis in a phylogeny reconstruction. Orthologous pairs of rice and Arabidopsis HD-Zip genes were predicted based on neighbour joining and maximum parsimony (MP) trees with support of conserved intron-exon organization. Additionally, a number of HD-Zip genes appeared to be unique to rice. Searching of EST and cDNA databases and expression analysis using RT-PCR showed that 30 out of 31 predicted rice HD-Zip genes are expressed. Most HD-Zip genes were broadly expressed in mature plants and seedlings, but others showed more organ specific patterns. Like in Arabidopsis and other dicots, a subset of the rice HD-Zip I and II genes was found to be regulated by drought stress. We identified both drought-induced and drought-repressed HD-Zip genes and demonstrate that these genes are differentially regulated in drought-sensitive versus drought-tolerant rice cultivars. The drought-repressed HD-Zip family I gene, Oshox4, was selected for promoter-GUS analysis, showing that drought-responsiveness of Oshox4 is controlled by the promoter and that Oshox4 expression is predominantly vascular-specific. Loss-of-function analysis of Oshox4 revealed no specific phenotype, but overexpression analysis suggested a role for Oshox4 in elongation and maturation processes.


Assuntos
Desastres , Genoma de Planta , Oryza/genética , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Genes Homeobox , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA