Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Proteome Res ; 20(3): 1809-1816, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33596081

RESUMO

The resistance properties of the bacterial spores are partially due to spore surface proteins, ∼30% of which are said to form an insoluble protein fraction. Previous research has also identified a group of spore coat proteins affected by spore maturation, which exhibit an increased level of interprotein cross-linking. However, the proteins and the types of cross-links involved, previously proposed based on indirect evidence, have yet to be confirmed experimentally. To obtain more insight into the structural basis of the proteinaceous component of the spore coat, we attempted to identify coat cross-links and the proteins involved using new peptide fractionation and bioinformatic methods. Young (day 1) and matured (day 5) Bacillus subtilis spores of wild-type and transglutaminase mutant strains were digested with formic acid and trypsin, and cross-linked peptides were enriched using strong cation exchange chromatography. The enriched cross-linked peptide fractions were subjected to Fourier-transform ion cyclotron resonance tandem mass spectrometry, and the high-quality fragmentation data obtained were analyzed using two specialized software tools, pLink2 and XiSearch, to identify cross-links. This analysis identified specific disulfide bonds between coat proteins CotE-CotE and CotJA-CotJC, obtained evidence of disulfide bonds in the spore crust proteins CotX, CotY, and CotZ, and identified dityrosine and ε-(γ)-glutamyl-lysine cross-linked coat proteins. The findings in this Letter are the first direct biochemical data on protein cross-linking in the spore coat and the first direct evidence of the cross-linked building blocks of the highly ordered and resistant structure called the spore coat.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Parede Celular , Proteínas de Membrana , Esporos Bacterianos/genética
2.
mSphere ; 5(4)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759332

RESUMO

Bacillus subtilis spores can reactivate their metabolism through germination upon contact with germinants and can develop into vegetative cells upon outgrowth. However, the mechanisms at the basis of the molecular machinery that triggers the spore germination and outgrowth processes are still largely unclear. To gain further insights into these processes, the transcriptome and proteome changes occurring during the conversion of spores to vegetative cells were analyzed in the present study. For each time point sampled, the changes in the spore proteome were quantitatively monitored relative to the proteome of metabolically 15N-labeled vegetative cells. Of the quantified proteins, 60% are shared by vegetative cells and spores, indicating that the spores have a minimal protein set, sufficient to resume metabolism upon completion of germination. These shared proteins thus represent the most basic "survival kit" for spore-based life. We observed no significant change in the proteome or the transcriptome until the spore's completion of germination. Our analysis identified 34 abundant mRNA transcripts in the dormant spores, 31 of which are rapidly degraded after germination. In outgrowing spores, we identified 3,152 differentially expressed genes and have demonstrated the differential expression of 322 proteins with our mass spectrometry analyses. Our data also showed that 173 proteins from dormant spores, including both proteins unique to spores and proteins shared with vegetative cells, were lost after completion of germination. The observed diverse timings of synthesis of different protein sets in spore outgrowth revealed a putative core strategy underlying the revival of 'life' from the B. subtilis spore.IMPORTANCE This study demonstrated the progress of macromolecular synthesis during Bacillus subtilis spore germination and outgrowth. The transcriptome analysis has additionally allowed us to trace gene expression during this transformation process. For the first time, the basic survival kit for spore-based life has been identified. In addition, in this analysis based on monitoring of protein levels in germinating and outgrowing spores, the transition from (ribo)nucleotide and amino acid biosynthesis to the restoration of all metabolic pathways can be clearly seen. The integrative multi-omics approach applied in this study thus has helped us to achieve a comprehensive overview of the molecular mechanisms at the basis of spore germination and outgrowth as well as to identify important knowledge gaps in need of further study.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Bacillus subtilis/fisiologia , Espectrometria de Massas , Redes e Vias Metabólicas , Análise em Microsséries , Proteoma , Fatores de Transcrição , Transcriptoma
3.
J Proteome Res ; 18(11): 3967-3976, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557040

RESUMO

Clostridioides difficile-associated infection (CDI) is a health-care-associated infection caused, as the name suggests, by obligate anaerobic pathogen C. difficile and thus mainly transmitted via highly resistant endospores from one person to the other. In vivo, the spores need to germinate into cells prior to establishing an infection. Bile acids and glycine, both available in sufficient amounts inside the human host intestinal tract, serve as efficient germinants for the spores. It is therefore, for better understanding of C. difficile virulence, crucial to study both the cell and spore states with respect to their genetic, metabolic, and proteomic composition. In the present study, mass spectrometric relative protein quantification, based on the 14N/15N peptide isotopic ratios, has led to quantification of over 700 proteins from combined spore and cell samples. The analysis has revealed that the proteome turnover between a vegetative cell and a spore for this organism is moderate. Additionally, specific cell and spore surface proteins, vegetative cell proteins CD1228, CD3301 and spore proteins CD2487, CD2434, and CD0684 are identified as potential protein markers for C. difficile infection.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Esporos Bacterianos/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida/métodos , Clostridioides difficile/citologia , Clostridioides difficile/patogenicidade , Enterocolite Pseudomembranosa/microbiologia , Humanos , Espectrometria de Massas em Tandem/métodos , Virulência
4.
Int J Mol Sci ; 19(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261644

RESUMO

Cell division in bacteria is initiated by the polymerization of FtsZ at midcell in a ring-like structure called the Z-ring. ZapA and other proteins assist Z-ring formation and ZapA binds ZapB, which senses the presence of the nucleoids. The FtsZ⁻ZapA binding interface was analyzed by chemical cross-linking mass spectrometry (CXMS) under in vitro FtsZ-polymerizing conditions in the presence of GTP. Amino acids residue K42 from ZapA was cross-linked to amino acid residues K51 and K66 from FtsZ, close to the interphase between FtsZ molecules in protofilaments. Five different cross-links confirmed the tetrameric structure of ZapA. A number of FtsZ cross-links suggests that its C-terminal domain of 55 residues, thought to be largely disordered, has a limited freedom to move in space. Site-directed mutagenesis of ZapA reveals an interaction site in the globular head of the protein close to K42. Using the information on the cross-links and the mutants that lost the ability to interact with FtsZ, a model of the FtsZ protofilament⁻ZapA tetramer complex was obtained by information-driven docking with the HADDOCK2.2 webserver.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Divisão Celular/genética , Reagentes de Ligações Cruzadas/química , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida/métodos , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Software
6.
Proteomics Clin Appl ; 12(5): e1700169, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29484825

RESUMO

PURPOSE: Bacterial endospores, the transmissible forms of pathogenic bacilli and clostridia, are heterogeneous multilayered structures composed of proteins. These proteins protect the spores against a variety of stresses, thus helping spore survival, and assist in germination, by interacting with the environment to form vegetative cells. Owing to the complexity, insolubility, and dynamic nature of spore proteins, it has been difficult to obtain their comprehensive protein profiles. EXPERIMENTAL DESIGN: The intact spores of Bacillus subtilis, Bacillus cereus, and Peptoclostridium difficile and their vegetative counterparts were disrupted by bead beating in 6 m urea under reductive conditions. The heterogeneous mixture was then double digested with LysC and trypsin. Next, the peptide mixture was pre-fractionated with zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) followed by reverse-phase LC-FT-MS analysis of the fractions. RESULTS: "One-pot" method is a simple, robust method that yields identification of >1000 proteins with high confidence, across all spore layers from B. subtilis, B. cereus, and P. difficile. CONCLUSIONS AND MEDICAL RELEVANCE: This method can be employed for proteome-wide analysis of non-spore-forming as well as spore-forming pathogens. Analysis of spore protein profile will help to understand the sporulation and germination processes and to distinguish immunogenic protein markers.


Assuntos
Bacillus subtilis/genética , Proteoma/genética , Proteômica , Esporos Bacterianos/genética , Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cromatografia Líquida , Esporos Bacterianos/química , Espectrometria de Massas em Tandem
7.
J Proteome Res ; 17(2): 903-917, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29260567

RESUMO

Spores of Bacillus cereus pose a threat to food safety due to their high resistance to the heat or acid treatments commonly used to make food microbiologically safe. Spores may survive these treatments and later resume growth either on foodstuffs or, after ingestion, upon entering the gut they are capable of producing toxins, which cause either vomiting or diarrhea. The outer layers of the spore, the spore coat and exosporium, consist primarily of proteins that may serve as potential biomarkers for detection. The major morphogenetic protein CotE is important for correct assembly and attachment of the outermost layer, the exosporium, and by extension retention of many proteins. However, characterization of the proteins affected by deletion of CotE has been limited to electrophoretic patterns. Here we report the effect of CotE deletion on the insoluble fraction of the spore proteome through liquid chromatography-Fourier transform tandem mass spectrometry (LC-FTMS/MS) analysis. A total of 560 proteins have been identified in both mutant and wild-type spore coat isolates. A further 163 proteins were identified exclusively in wild-type spore isolates indicating that they are dependent on CotE for their association with the spore. Several of these are newly confirmed as associated with the exosporium, namely BC_2569 (BclF), BC_3345, BC_2427, BC_2878, BC_0666, BC_2984, BC_3481, and BC_2570. A total of 153 proteins were only identified in ΔCotE spore isolates. This was observed for proteins that are known or likely to be interacting with or are encased by CotE. Crucial spore proteins were quantified using a QconCAT reference standard, the first time this was used in a biochemically heterogeneous system. This allowed us to determine the absolute abundance of 21 proteins, which spanned across three orders of magnitude and together covered 5.66% ± 0.51 of the total spore weight. Applying the QconCAT methodology to the ΔCotE mutant allowed us to quantify 4.13% ± 0.14 of the spore total weight and revealed a reduction in abundance for most known exosporium associated proteins upon CotE deletion. In contrast, several proteins, either known or likely to be interacting with or encased by CotE (i.e., GerQ), were more abundant. The results obtained provide deeper insight into the layered spore structure such as which proteins are exposed on the outside of the spore. This information is important for developing detection methods for targeting spores in a food safety setting. Furthermore, protein stoichiometry and determination of the abundance of germination mediating enzymes provides useful information for germination and outgrowth model development.


Assuntos
Bacillus cereus/química , Proteínas de Bactérias/genética , Proteoma/genética , Esporos Bacterianos/química , Sequência de Aminoácidos , Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Microbiologia de Alimentos , Deleção de Genes , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Proteoma/química , Proteoma/isolamento & purificação , Proteoma/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem
8.
Front Microbiol ; 7: 1636, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790212

RESUMO

Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid Schaeffer's-glucose (SG) agar plates and 15N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N:15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the differences in the coat protein composition and assembly. Corroborating the proteomic analyses, electron microscopy analyses show a significantly thinner outer coat layer of the spores cultured on the solid agar medium.

9.
J Proteome Res ; 15(2): 585-94, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26731423

RESUMO

The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to play an essential role in triggering the initiation of germination. In this study, we isolated the IM of bacterial spores, in parallel with the isolation of the membrane of vegetative cells. With the use of GeLC-MS/MS, over 900 proteins were identified from the B. subtilis spore IM preparations. By bioinformatics-based membrane protein predictions, ca. one-third could be predicted to be membrane-localized. A large number of unique proteins as well as proteins common to the two membrane proteomes were identified. In addition to previously known IM proteins, a number of IM proteins were newly identified, at least some of which are likely to provide new insights into IM physiology, unveiling proteins putatively involved in spore germination machinery and hence putative germination inhibition targets.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/classificação , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Proteínas de Membrana/classificação , Microscopia Eletrônica de Transmissão , Proteoma/classificação , Esporos Bacterianos/ultraestrutura , Espectrometria de Massas em Tandem
10.
Biotechnol Biofuels ; 8: 111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26246854

RESUMO

BACKGROUND: This study aimed at exploring the molecular physiological consequences of a major redirection of carbon flow in so-called cyanobacterial cell factories: quantitative whole-cell proteomics analyses were carried out on two (14)N-labelled Synechocystis mutant strains, relative to their (15)N-labelled wild-type counterpart. Each mutant strain overproduced one specific commodity product, i.e. ethanol or lactic acid, to such an extent that the majority of the incoming CO2 in the organism was directly converted into the product. RESULTS: In total, 267 proteins have been identified with a significantly up- or down-regulated expression level. In the ethanol-producing mutant, which had the highest relative direct flux of carbon-to-product (>65%), significant up-regulation of several components involved in the initial stages of CO2 fixation for cellular metabolism was detected. Also a general decrease in abundance of the protein synthesizing machinery of the cells and a specific induction of an oxidative stress response were observed in this mutant. In the lactic acid overproducing mutant, that expresses part of the heterologous l-lactate dehydrogenase from a self-replicating plasmid, specific activation of two CRISPR associated proteins, encoded on the endogenous pSYSA plasmid, was observed. RT-qPCR was used to measure, of nine of the genes identified in the proteomics studies, also the adjustment of the corresponding mRNA level. CONCLUSION: The most striking adjustments detected in the proteome of the engineered cells were dependent on the specific product formed, with, e.g. more stress caused by lactic acid- than by ethanol production. Up-regulation of the total capacity for CO2 fixation in the ethanol-producing strain was due to hierarchical- rather than metabolic regulation. Furthermore, plasmid-based expression of heterologous gene(s) may induce genetic instability. For selected, limited, number of genes a striking correlation between the respective mRNA- and the corresponding protein expression level was observed, suggesting that for the expression of these genes regulation takes place primarily at the level of gene transcription.

11.
Biochim Biophys Acta ; 1854(10 Pt A): 1269-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26049081

RESUMO

Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glucose/deficiência , Proteoma , Transcriptoma , Reatores Biológicos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Marcação por Isótopo , Análise em Microsséries , Anotação de Sequência Molecular , Isótopos de Nitrogênio , Fatores de Tempo
12.
J Proteome Res ; 14(5): 2169-76, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25853650

RESUMO

Bacillus weihenstephanensis is a subspecies of the Bacillus cereus sensu lato group of spore-forming bacteria known to cause food spoilage or food poisoning. The key distinguishing phenotype of B. weihenstephanensis is its ability to grow below 7 °C or, from a food safety perspective, to grow and potentially produce toxins in a refrigerated environment. Comparison of the proteome profile of B. weihenstephanensis upon its exposure to different culturing conditions can reveal clues to the mechanistic basis of its psychrotolerant phenotype as well as elucidate relevant aspects of its toxigenic profile. To this end, the genome of the type strain B. weihenstephanensis WSBC 10204 was sequenced and annotated. Subsequently, the proteome profiles of cells grown at either 6 or 30 °C were compared, which revealed considerable differences and indicated several hundred (uncharacterized) proteins as being subproteome- and/or temperature-specific. In this manner, several processes were newly indicated to be dependent on growth temperature, such as varying carbon flux routes and a different role for the urea cycle. Furthermore, a possible post-translational regulatory function for acetylation was suggested. Toxin production was determined to be largely independent of growth temperature.


Assuntos
Bacillus cereus/genética , Proteínas de Bactérias/genética , Genoma Bacteriano , Processamento de Proteína Pós-Traducional , Proteoma/genética , Acetilação , Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo do Carbono/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enterotoxinas , Microbiologia de Alimentos , Isoformas de Proteínas , Proteoma/metabolismo , Análise de Sequência de DNA , Temperatura , Ureia/metabolismo
13.
Anal Chem ; 87(10): 5387-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25894977

RESUMO

Stationary-phase-assisted modulation is used to overcome one of the limitations of contemporary comprehensive two-dimensional liquid chromatography, which arises from the combination of a first-dimension column that is typically narrow and long and a second-dimension column that is wide and short. Shallow gradients at low flow rates are applied in the first dimension, whereas fast analyses (at high flow rates) are required in the second dimension. Limitations of this approach include a low sample capacity of the first-dimension column and a high dilution of the sample in the complete system. Moreover, the relatively high flow rates used for the second dimension make direct (splitless) hyphenation to mass spectrometry difficult. In the present study we demonstrate that stationary-phase-assisted modulation can be implemented in an online comprehensive two-dimensional LC (LC × LC) setup to shift this paradigm. The proposed active modulation makes it possible to choose virtually any combination of first- and second-dimension column diameters without loss in system performance. In the current setup, a 0.30 mm internal diameter first-dimension column with a relatively high loadability is coupled to a 0.075 mm internal diameter second-dimension column. This actively modulated system is coupled to a nanoelectrospray high-resolution mass spectrometer and applied for the separation of the tryptic peptides of a six-protein mixture and for the proteome-wide analyses of yeast from Saccharomyces cerevisiae. In the latter application, about 20000 MS/MS spectra are generated within 24 h analysis time, resulting in the identification of 701 proteins.


Assuntos
Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Métodos Analíticos de Preparação de Amostras , Cromatografia Líquida , Sais/química , Espectrometria de Massas em Tandem
14.
Anal Bioanal Chem ; 407(13): 3817-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25801383

RESUMO

Post-polymerization photografting is a versatile tool to alter the surface chemistry of organic-based monoliths so as to obtain desired stationary phase properties. In this study, 2-acrylamido-2-methyl-1-propanesulfonic acid was grafted to a hydrophobic poly(butyl methacrylate-co-ethylene glycol dimethacrylate) monolith to create a strong cation exchange stationary phase. Both single-step and two-step photografting were addressed, and the effects of grafting conditions were assessed. An experimental design has been applied in an attempt to optimize three of the key parameters of the two-step photografting chemistry, i.e. the grafting time of the initiator, the monomer concentration and the monomer irradiation time. The photografted columns were implemented in a comprehensive two-dimensional column liquid chromatography ( (t) LC × (t) LC) workflow and applied for the separation of intact proteins and peptides. A baseline separation of 11 intact proteins was obtained within 20 min by implementing a gradient across a limited RP composition window in the second dimension. (t) LC × (t) LC with UV detection was used for the separation of cytochrome c digest, bovine serum insulin digest and a digest of a complex protein mixture. A semi-quantitative estimation of the occupation of separation space, the orthogonality, of the (t) LC × (t) LC system yielded 75%. The (t) LC × (t) LC setup was hyphenated to a high-resolution Fourier transform ion cyclotron resonance mass spectrometer instrument to identify the bovine serum insulin tryptic peptides and to demonstrate the compatibility with MS analysis.


Assuntos
Cromatografia por Troca Iônica/métodos , Espectrometria de Massas/métodos , Metacrilatos/química , Proteínas/química , Proteínas/isolamento & purificação , Fotoquímica , Polímeros/química , Polímeros/efeitos da radiação
15.
Food Microbiol ; 45(Pt A): 54-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25481062

RESUMO

Resistance characteristics of bacterial endospores towards various environmental stresses such as chemicals and heat are in part attributed to their coat proteins. Heat resistance is developed in a late stage of sporulation and during maturation of released spores. Using our gel-free proteomic approach and LC-FT-ICR-MS/MS analysis we have monitored the efficiency of the tryptic digestion of proteins in the coat during spore maturation over a period of eight days, using metabolically (15)N labeled mature spores as reference. The results showed that during spore maturation the loss of digestion efficiency of outer coat and crust proteins synchronized with the increase in heat resistance. This implicates that spore maturation involves chemical cross-linking of outer coat and crust layer proteins leaving the inner coat layer proteins unmodified. It appears that digestion efficiencies of spore surface proteins can be linked to their location within the coat and crust layers. We also attempted to study a possible link between spore maturation and the observed heterogeneity in spore germination.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Microbiologia de Alimentos , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Cromatografia Líquida , Reagentes de Ligações Cruzadas , Temperatura Alta , Proteômica , Esporos Bacterianos , Espectrometria de Massas em Tandem , Fatores de Tempo
16.
FEMS Microbiol Lett ; 358(2): 137-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25110127

RESUMO

Endospores are metabolically dormant, multi-layered cellular structures formed by Gram-positive bacteria belonging to the genera Bacillus, Clostridium and related organisms. Their external layers are composed of proteins which in part play a role in the resistance behaviour of spores to varied chemical and environmental assaults. Thus, protein analysis is of major interest in spore biology. Spore proteomic studies have been carried out previously but these studies have focused on the soluble coat protein fraction. Using gel-based techniques, protein identification and analysis were performed. Mass spectrometry-driven proteomics has opened new avenues to resolve in particular the insoluble part of the spore layer proteomes. Mass spectrometry-based qualitative and quantitative proteomics methods expand the knowledge about both the actual composition and the amount of proteins in their various layers. The techniques can also be used to study the integrity of the layers as well as spore biology in general. This notion is explored concisely in this mini-review.


Assuntos
Proteínas de Bactérias/análise , Proteoma/análise , Esporos Bacterianos/química , Bacillus/química , Clostridium/química , Espectrometria de Massas , Proteômica/métodos
17.
J Proteomics ; 108: 65-77, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24840472

RESUMO

A high molecular weight fraction of a HeLa cell nuclear extract containing nearly 1100 identified proteins was cross-linked with bis(succinimidyl)-3-azidomethyl glutarate (BAMG). The azido group in cross-linked peptides can be reduced to an amine group. Reduction enables isolation of cross-linked peptides by diagonal strong cation exchange chromatography. Collision-induced dissociation (CID) of reduced cross-linked peptides shows abundant cleavage of the cross-link amide bonds, along with the cleavage of peptide bonds of the composing peptide pair. A defined relationship exists between the sum of the masses of a pair of cleavage products and the mass of the parent compound. This relationship enables accurate mass determination of the two composing peptides. With this knowledge, the identity of the pair of peptides in a cross-link is revealed at an extremely low false discovery rate by peptide fragment fingerprinting with MS1MS2 data from the entire human sequence databases with a conventional search engine for peptide identification. Our approach resulted in identification of 229 intraprotein and 18 interprotein cross-links. BIOLOGICAL SIGNIFICANCE: Mapping protein-protein interactions in complex samples like digests of in vitro cross-linked extracts, by interrogation of entire species specific sequence database with tandem mass spectrometric data may yield repositories of cross-linked peptides. Results will reveal interactions between proteins, the identity of which may lead to new hypotheses about molecular mechanisms and regulations of biological function, or new targets for drug development. In this paper we describe a new analytical strategy that improves existing approaches of cross-link mapping in complex samples. The cross-linker that we have designed and synthesized for our approach is membrane permeable. This opens avenues for in vivo cross-linking for better understanding of dynamic protein complex topologies involved in many biological processes.


Assuntos
Reagentes de Ligações Cruzadas/química , Bases de Dados de Proteínas , Espectrometria de Massas , Peptídeos/química , Pegadas de Proteínas/métodos , Proteômica , Células HeLa , Humanos , Oxirredução , Peptídeos/metabolismo
18.
J Chromatogr A ; 1348: 34-46, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24819016

RESUMO

Knowledge of spatial proximity of amino acid residues obtained by chemical cross-linking and mass spectrometric analysis provides information about protein folding, protein-protein interactions and topology of macromolecular assemblies. We show that the use of bis(succinimidyl)-3-azidomethyl glutarate as a cross-linker provides a solution for two major analytical problems of cross-link mapping by peptide fragment fingerprinting (PFF) from complex sequence databases, i.e., low abundance of protease-generated target peptides and lack of knowledge of the masses of linked peptides. Tris(carboxyethyl)phosphine (TCEP) reduces the azido group in cross-linked peptides to an amine group in competition with cleavage of an amide bond formed in the cross-link reaction. TCEP-induced reaction products were separated by diagonal strong cation exchange (SCX) from unmodified peptides. The relation between the sum of the masses of the cleavage products and the mass of the parent cross-linked peptide enables determination of the masses of candidate linked peptides. By reversed phase LC-MS/MS analysis of secondary SCX fractions, we identified several intraprotein and interprotein cross-links in a HeLa cell nuclear extract, aided by software tools supporting PFF from the entire human sequence database. The data provide new information about interacting protein domains, among others from assemblies involved in splicing.


Assuntos
Cromatografia Líquida , Bases de Dados de Proteínas , Mapeamento de Peptídeos , Peptídeos/isolamento & purificação , Reagentes de Ligações Cruzadas , Células HeLa , Humanos , Peptídeos/química , Estrutura Terciária de Proteína , Sais/química
19.
J Proteome Res ; 12(10): 4507-21, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23998435

RESUMO

Bacillus cereus, responsible for food poisoning, and Clostridium difficile, the causative agent of Clostridium difficile-associated diarrhea (CDAD), are both spore-forming pathogens involved in food spoilage, food intoxication, and other infections in humans and animals. The proteinaceous coat and the exosporium layers from spores are important for their resistance and pathogenicity characteristics. The exosporium additionally provides an ability to adhere to surfaces eventually leading to spore survival in food. Thus, studying these layers and identifying suitable protein targets for rapid detection and removal of spores is of the utmost importance. In this study, we identified 100 proteins from B. cereus spore coat, exosporium and 54 proteins from the C. difficile coat insoluble protein fraction. In an attempt to define a universal set of spore outer layer proteins, we identified 11 superfamily domains common to the identified proteins from two Bacilli and one Clostridium species. The evaluated orthologue relationships of identified proteins across different spore formers resulted in a set of 13 coat proteins conserved across the spore formers and 12 exosporium proteins conserved in the B. cereus group, which could be tested for quick and easy detection or targeted in strategies aimed at removal of spores from surfaces.


Assuntos
Bacillus cereus/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Clostridioides difficile/metabolismo , Proteoma/metabolismo , Esporos Bacterianos/metabolismo , Bacillus cereus/fisiologia , Aderência Bacteriana , Clostridioides difficile/fisiologia , Farmacorresistência Bacteriana , Microbiologia de Alimentos , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína
20.
Microbiology (Reading) ; 159(Pt 8): 1673-1682, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23728625

RESUMO

The opportunistic fungal pathogen Candida albicans has developed various ways to overcome iron restriction in a mammalian host. Using different surface proteins, among them membrane- and wall-localized glycosylphosphatidylinositol (GPI) proteins, it can exploit iron from host haemoglobin, ferritin and transferrin. Culturing C. albicans in rich medium supplemented with the ferrous iron chelator bathophenanthroline disulfonic acid or in the minimal medium yeast nitrogen base resulted in a strong decrease of the iron content of the cells. MS analysis of the changes in the wall proteome of C. albicans upon iron restriction showed a strong increase in the levels of the GPI-modified adhesin Als3, which also serves as a ferritin receptor, and of the GPI-modified CFEM (common in fungal extracellular membranes) domain-containing proteins Csa1, Pga7, Pga10, and Rbt5. The wall levels of the GPI-modified proteins Hyr1, the adhesin Als4 and the copper- and zinc-containing superoxide dismutase Sod4 also strongly increased, whereas the levels of Tos1 (a non-GPI protein) and the GPI-modified adhesin Als2 strongly decreased. Strikingly, peptides derived from the CFEM domain of the haem-binding proteins Csa1, Pga10 and Rbt5 were capable of forming iron adduct ions during MS analysis, consistent with a key role of this domain in haem binding.


Assuntos
Candida albicans/química , Candida albicans/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Proteínas Fúngicas/análise , Ferro/metabolismo , Proteoma/análise , Candida albicans/crescimento & desenvolvimento , Meios de Cultura/química , Perfilação da Expressão Gênica , Espectrometria de Massas , Proteínas de Membrana/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA