RESUMO
We aimed to describe the landscape, including molecular, epidemiological, and clinical aspects of CHIKV infections in the Ribeirao Preto region, an area endemic to dengue. We randomly screened 3744 plasma samples that had undergone DENV diagnosis to evaluate CHIKV-RNA using an in-house RT-PCR assay. Positive samples were followed clinically, and RNA samples were submitted to whole genome sequencing. Seventeen cases (0.5 %) were positive for CHIKV-RNA despite being negative for DENV-RNA. Notably, half of the patients experienced prolonged arthralgia lasting more than 90 days. Compared with the healthy control group, leukopenia and thrombocytopenia were observed in all CHIKV-positive individuals with statistically significant P values (P < 0.0001 and P = 0.0003, respectively). The genomic analysis revealed that the CHIKV strains being studied are classified within the East-Central-South-African (ECSA) genotype. This analysis identified new mutations, E1: K211E and E2: V264A, while the previously known mutation E1: A226V was not detected among these strains. This study highlights the need for epidemiological surveillance and preparedness for potential CHIKV epidemics in Brazil, particularly where other arboviruses co-circulate.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Dengue , Genótipo , RNA Viral , Humanos , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/sangue , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Dengue/epidemiologia , Dengue/virologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , RNA Viral/genética , Adulto Jovem , Doenças Endêmicas , Adolescente , Sequenciamento Completo do Genoma , Idoso , Criança , Filogenia , Mutação , Pré-Escolar , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/classificação , Trombocitopenia/epidemiologia , Trombocitopenia/virologiaAssuntos
Vírus da Dengue , Dengue , Humanos , Brasil/epidemiologia , Vírus da Dengue/genética , Dengue/epidemiologia , GenótipoRESUMO
The aim of this study was to describe epidemiological characteristics and perform SARS-CoV-2 genomic surveillance in the southeastern region of São Paulo State. During the first months of 2022, we compared weekly SARS-CoV-2 infection prevalence considering age, Ct value, and variants' lineages. An increase in the number of SARS-CoV-2-positive cases until the fourth epidemiological week of 2022 was observed. From the fourth epidemiological week onwards, the number of tests for SARS-CoV-2 diagnosis began to decrease, but the number of positive samples for SARS-CoV-2 remained high, reaching its most expressive level with a rate of 60% of infected individual cases. In this period, we observed a progressive increase in SARS-CoV-2 infection within the 0-10 age group throughout the epidemiological weeks, from 2.8% in the first epidemiological week to 9.2% in the eighth epidemiological week of 2022. We further observed significantly higher Ct values within younger patient samples compared to other older age groups. According to lineage assignment, SARS-CoV-2 (BA.1) was the most prevalent (74.5%) in the younger group, followed by BA.1.1 (23%), BA.2 (1.7%), and Delta (1%). Phylogenetic analysis showed that BA.2 sequences clustered together, indicating sustained transmission of this Omicron VOC sub-lineage by that time. Our results suggest the initial dissemination steps of the Omicron's sub-linage BA.2 into the younger group, due to specific genomic features of the detected sequences. These data provide interesting results related to the spread, emergence, and evolution of the Omicron variant in the southeast Brazilian population.
RESUMO
The emergence of SARS-CoV-2 and the subsequent pandemic have prompted extensive diagnostic and clinical efforts to mitigate viral spread. However, these strategies have largely overlooked the presence of other respiratory viruses. Acute respiratory diseases in pediatric patients can be caused by a diverse range of viral agents, and metagenomics represents a powerful tool for their characterization. This study aimed to investigate the viral abundance in pediatric patients with acute respiratory symptoms who tested negative for SARS-CoV-2 during the Omicron pandemic wave. To achieve this, viral metagenomics and next-generation sequencing were employed on 96 nasopharyngeal swab samples, which were organized into 12 pools, with each pool consisting of eight individual samples. Metagenomic analysis revealed that the most prevalent viruses associated with acute disease in pediatric patients were respiratory syncytial virus (detected in all pools) and enteroviruses, which are known to cause significant morbidity and mortality in children. Additionally, clinically significant viruses such as mumps orthorubulavirus, human metapneumovirus, influenza A, and a wide array of human herpesviruses (1, 3-7) were identified. These findings highlight the extensive potential of viral metagenomics in identifying viruses other than SARS-CoV-2 that contribute to acute infections in children. Consequently, this methodology should garner clinical attention in terms of differential diagnosis and the development of public policies to address such conditions in the global pediatric population.
RESUMO
São Paulo is the financial center of Brazil, with a population of over 12 million, that receives travelers from all over the world for business and tourism. It was the first city in Brazil to report a case of COVID-19 that rapidly spread across the city despite the implementation of the restriction measures. Despite many reports, much is still unknown regarding the genomic diversity and transmission dynamics of this virus in the city of São Paulo. Thus, in this study, we provide a retrospective overview of the COVID-19 epidemic in São Paulo City, Southeastern, Brazil, by generating a total of 9995 near-complete genome sequences from all the city's different macro-regions (North, West, Central, East, South, and Southeast). Our analysis revealed that multiple independent introduction events of different variants (mainly Gamma, Delta, and Omicron) occurred throughout time. Additionally, our estimates of viral movement within the different macro-regions further suggested that the East and the Southeast regions were the largest contributors to the Gamma and Delta viral exchanges to other regions. Meanwhile, the North region had a higher contribution to the dispersion of the Omicron variant. Together, our results reinforce the importance of increasing SARS-CoV-2 genomic monitoring within the city and the country to track the real-time evolution of the virus and to detect earlier any eventual emergency of new variants of concern that could undermine the fight against COVID-19 in Brazil and worldwide.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Brasil/epidemiologia , América Latina , Estudos RetrospectivosRESUMO
From a country with one of the highest SARS-CoV-2 morbidity and mortality rates, Brazil has implemented one of the most successful vaccination programs. Brazil's first model city vaccination program was performed by the CoronaVac vaccine (Sinovac Biotech) in the town of Serrana, São Paulo State. To evaluate the vaccination effect on the SARS-CoV-2 molecular dynamics and clinical outcomes, we performed SARS-CoV-2 molecular surveillance on 4375 complete genomes obtained between June 2020 and April 2022 in this location. This study included the period between the initial SARS-CoV-2 introduction and during the vaccination process. We observed that the SARS-CoV-2 substitution dynamics in Serrana followed the viral molecular epidemiology in Brazil, including the initial identification of the ancestral lineages (B.1.1.28 and B.1.1.33) and epidemic waves of variants of concern (VOC) including the Gamma, Delta, and, more recently, Omicron. Most probably, as a result of the immunization campaign, the mortality during the Gamma and Delta VOC was significantly reduced compared to the rest of Brazil, which was also related to lower morbidity. Our phylogenetic analysis revealed the evolutionary history of the SARS-CoV-2 in this location and showed that multiple introduction events have occurred over time. The evaluation of the COVID-19 clinical outcome revealed that most cases were mild (88.9%, 98.1%, 99.1% to Gamma, Delta, and Omicron, respectively) regardless of the infecting VOC. In conclusion, we observed that vaccination was responsible for reducing the death toll rate and related COVID-19 morbidity, especially during the gamma and Delta VOC; however, it does not prevent the rapid substitution rate and morbidity of the Omicron VOC.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiologia , Filogenia , COVID-19/epidemiologia , COVID-19/prevenção & controle , VacinaçãoRESUMO
The authors hereby request the inclusion of two authors (Olivia Teixeira and Maria Cristina Nonato) in the recently published article in Viruses entitled "Nucleocapsid (N) gene mutations of SARS-CoV-2 can affect real-time RT-PCR diagnostic and impact false-negative results" [...].
RESUMO
Our effort in SARS-CoV-2 genomic surveillance in Brazil has detected the Alpha Variant of Concern with a predominance higher than 75% in the population of Ilhabela island (São Paulo State) at a time when the Gamma VOC was already predominating the mainland raised concerns for closer surveillance on this island. Therefore, we intensified the surveillance for 24 weeks by generating data from 34% of local positive cases. Our data show that the patterns of VOC predominance dynamics and infection rates were in general distinct from the mainland. We report here the first known case of Alpha predominance in a Brazilian population, a delay greater than 3 months for the Gamma to dominate the previous variants compared to the mainland, and a faster dispersion rate of Gamma and Delta VOCs compared to the mainland. Phylogenetic analysis revealed the SARS-CoV-2 transmission dynamics in Ilhabela were characterized by multiple independent introduction events of Gamma and Delta, with a few events of Alpha introduction, two of them followed by community transmission. This study evidenced the peculiar behavior of SARS-CoV-2 variants in an isolated population and brought to light the importance of specific programs for SARS-CoV-2 genomic surveillance in isolated populations.
Assuntos
COVID-19 , SARS-CoV-2 , Brasil/epidemiologia , COVID-19/epidemiologia , Humanos , Filogenia , SARS-CoV-2/genéticaRESUMO
Human T cell lymphotropic virus (HTLV) is the caustive agent of two main conditions i. e., the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and the adult T-cell leukemia/lymphoma (ATLL). HTLV diagnosis is based on serological and molecular approaches; however, an accurate and validated method is still needed. The objective of this study was to establish a rapid and sensitive molecular test to confirm and discriminate HTLV 1/2 types. The test validation was performed as a multicentric study involving HTLV confirmation centers throughout Brazil. Proviral DNA was extracted from whole blood and the amplification was performed using in-house designed primer and probe sets targeting the pol genomic region. An internal control to validate the extraction and amplification was also included. The limit of detection (LoD) of the assay was four copies/reaction for HTLV-1 and 10.9 copies/reaction for HTLV-2. The diagnostic sensitivity of the platform was 94.6% for HTLV-1, 78.6% for HTLV-2, and the specificity was 100% for both viruses. Cross-reactions of the test with human viruses including HAV, HBV, HCV, HIV-1/2, and parvovirus B19 were not observed. During the multicentric validation, the test was used to screen a total of 692 blood samples obtained from previously confirmed HTLV-positive individuals. From these, 91.1% tested positive being concordant with the previously obtained results. In conclusion, our duoplex-RT-PCR-HTLV1 /2 presented adequate efficiency for HTLV-1/2 differentiation showing high sensitivity and specificity. Therefore, it can be a suitable tool for confirmation of suspected and inconclusive HTLV cases, prenatal and pre-transplant diagnosis, in Brazil and in other countries HTLV-endemic countries.
RESUMO
Human T-lymphotropic virus 1 (HTLV-1) is the etiologic agent of adult cell leukemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the major questions in HTLV-1 studies is related to the understanding of causes that lead to different clinical manifestations. However, it is well known that the viral genes tax and HTLV-1 basic leucine zipper factor (HBZ) are related to viral infectivity and the development of neurological and hematological diseases. Currently, there is evidence that HTLV-1 infected cells can release small extracellular vesicles (sEVs) involved in the mechanisms of viral particles spreading. Therefore, we evaluated the expression levels of tax and HBZ viral transcripts in serum-derived sEVs from HTLV-1 carriers, as well as the role of these vesicles in the modulation of the immune response. Three HAM/TSP carriers presented detectable levels of tax and HBZ transcripts in sEVs and were positively correlated to the proviral load (PVL) in peripheral blood mononuclear cells (PBMCs). The viral transcripts were only detectable in individuals with a PVL higher than 6,000/105 PBMCs. Additionally, it was observed that HBZ presented a 2-12-folds increase over tax expression units. Gene expression and secretory protein analysis indicated that PBMCs from blood donors and HTLV-1 carriers exposed to increasing doses of tax+ HBZ+ sEVs showed a dose-dependent increase in interferon (IFN)-γ and interleukin (IL)-8 transcripts and proteins. Interestingly, the increase in IL-8 levels was close to those seen in HTLV-1-infected PBMCs with high PVL. Taken together, these findings indicate that the expression of viral transcripts in serum-derived sEVs of HTLV-1 carriers is related to the PVL presented by the infected individual. Additionally, tax+ HBZ+ sEVs can induce the production of inflammatory cytokines in patients with low PVL, which may be related to the development of symptoms in HTLV-1 infection.
RESUMO
The SARS-CoV-2 alpha VOC (also known as lineage B.1.1.7) initially described in the autumn, 2020 in UK, rapidly became the dominant lineage across much of Europe. Despite multiple studies reporting molecular evidence suggestive of its circulation in Brazil, much is still unknown about its genomic diversity in the state of São Paulo, the main Brazilian economic and transportation hub. To get more insight regarding its transmission dynamics into the State we performed phylogenetic analysis on all alpha VOC strains obtained between February and August 2021 from the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants. The performed phylogenetic analysis showed that most of the alpha VOC genomes were interspersed with viral strains sampled from different Brazilian states and other countries suggesting that multiple independent Alpha VOC introductions from Brazil and overseas have occurred in the São Paulo State over time. Nevertheless, large monophyletic clusters were also observed especially from the Central-West part of the São Paulo State (the city of Bauru) and the metropolitan region of the São Paulo city. Our results highlight the Alpha VOC molecular epidemiology in the São Paulo state and reinforce the need for continued genomic surveillance strategies for the real-time monitoring of potential emerging SARS-CoV-2 variants during the ever-growing vaccination process.
Assuntos
COVID-19 , Filogenia , SARS-CoV-2/genética , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Genômica , Humanos , Organização Mundial da SaúdeRESUMO
The current COVID-19 pandemic demands massive testing by Real-time RT-PCR (Reverse Transcription Polymerase Chain Reaction), which is considered the gold standard diagnostic test for the detection of the SARS-CoV-2 virus. However, the virus continues to evolve with mutations that lead to phenotypic alterations as higher transmissibility, pathogenicity or vaccine evasion. Another big issue are mutations in the annealing sites of primers and probes of RT-PCR diagnostic kits leading to false-negative results. Therefore, here we identify mutations in the N (Nucleocapsid) gene that affects the use of the GeneFinder COVID-19 Plus RealAmp Kit. We sequenced SARS-CoV-2 genomes from 17 positive samples with no N gene detection but with RDRP (RNA-dependent RNA polymerase) and E (Envelope) genes detection, and observed a set of three different mutations affecting the N detection: a deletion of 18 nucleotides (Del28877-28894), a substitution of GGG to AAC (28881-28883) and a frameshift mutation caused by deletion (Del28877-28878). The last one cause a deletion of six AAs (amino acids) located in the central intrinsic disorder region at protein level. We also found this mutation in 99 of the 14,346 sequenced samples by the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants, demonstrating the circulation of the mutation in Sao Paulo, Brazil. Continuous monitoring and characterization of mutations affecting the annealing sites of primers and probes by genomic surveillance programs are necessary to maintain the effectiveness of the diagnosis of COVID-19.