RESUMO
Introduction: Enterococci are commensals of the gastrointestinal tract of humans and animals that evolved into opportunistic pathogens with high antimicrobial resistance and virulence. Multidrug-resistant Enterococcus is a major cause of hospital-acquired infections worldwide. For this reason, the characterization of non-clinical reservoirs of Enterococci and their epidemiological link to resistant hospital isolates is crucial for controlling their spread. Methods: A total of 295 samples collected from livestock (pigs and cows, n = 135) and environment (public buses, passengers hands, and urban environments, n = 160) were screened for Enterococcus spp. E. faecium antimicrobial resistance profiles, virulence potential, and clonal population were further characterized. Results: Enterococci were detected in 90.5% (n = 267) of the samples, with a higher prevalence in livestock (100%) than the environment (82.5%, p < 0.0001), but none of the isolates exhibited vancomycin resistance. E. faecalis was the most prevalent species (51.7%), predominantly found in livestock (62.2%), while E. faecium was more common in the environment. Of the 59 E. faecium isolates, 78% showed resistance to ≥3 antibiotic classes and contained associated resistance genes, namely tetracyclines (tetM and tetL), beta-lactams (mutations in pbp5), and high-level resistance to aminoglycosides (ant(6)-Ia and aac(6')-aph(2â³)). A wide array of virulence factors was detected among E. faecium, associated with adherence, biofilm formation, and adaptation to host response, while hospital-associated virulence markers, such as IS16, were less frequent, probably due to the non-clinical nature of the isolates. Clonal population analysis revealed a diverse E. faecium population. Although no direct epidemiological link could be traced between our isolates and specific clinical isolates, infection-associated genetic backgrounds were identified in non-clinical isolates: one isolate from pigs belonged to CC17 (ST32), while four isolates belonged to CC94, including one recovered from pigs (ST296), one from cows (ST2206), one from the urban environment (ST1205), and other from buses (ST800). Discussion: This study underscores a high prevalence of clinically relevant Enterococcus species among healthy livestock and the environment. Despite the absence of vancomycin resistance and limited hospital infection-associated clonal lineages, the presence of E. faecium with significant virulence potential and resistance to critical antibiotics in human and veterinary medicine highlights the need for continuing surveillance of non-clinical reservoirs.
RESUMO
Streptococcus pneumoniae carriage studies are crucial to monitor changes induced by use of pneumococcal conjugate vaccines and inform vaccination policies. In this cross-sectional study, we examined changes within the pneumococcal population following introduction of PCV13 in 2015 in the National Immunization Program (NIP), in Portugal. In 2018-2020 (NIP-PCV13), we obtained 1450 nasopharyngeal samples from children ≤6 years attending day-care. We assessed serotypes, antimicrobial resistance, and genotypes (MLST and GPSC) and compared findings with earlier periods: 2009-2010 (pre-PCV13), 2011-2012 (early-PCV13), and 2015-2016 (late-PCV13). Pneumococcal carriage prevalence remained stable at 60.2 %. Carriage of PCV13 serotypes was 10.7 %, markedly reduced compared to pre-PCV13 period (47.6 %). The most prevalent PCV13 serotypes were 19F, 3, and 19A all showing a significant decreasing trend compared to the pre-PCV13 period (from 7.1 % to 4.7 %, 10.1 % to 1.8 %, and 14.1 % to 1.8 %, respectively), a notable observation given the described limited effectiveness of PCV13 against serotype 3. Non-vaccinated children and children aged 4-6 years were more likely to carry PCV13 serotypes (2.5-fold, 95 %CI [1.1-5.6], and 2.9-fold, 95 %CI [1.3-6.8], respectively). The most prevalent non-PCV13 serotypes were 15B/C, 11A, 23B, 23A, and NT, collectively accounting for 51.9 % of all isolates. In total, 30.5 % of all pneumococci were potentially covered by PCV20. Resistance to penicillin (low-level) and macrolides increased significantly, from 9.3 % and 13.4 %, respectively, in the late-PCV13 period, to approximately 20 % each, mostly due to lineages expressing non-PCV13 serotypes, nearing pre-PCV13 levels. An expansion of lineages traditionally associated with PCV13 serotypes, like CC156-GPSC6 (serotype 14) and CC193-GPSC11 (serotype 19F), but now predominantly expressing non-PCV13 serotypes (11A, 15B/C, and 24F for GPSC6; and 15A and 21 for GPSC11) was noted. These findings indicate that the pneumococcal population is adapting to the pressures conferred by PCV13 and antimicrobial use and indicate the need to maintain close surveillance.
Assuntos
Portador Sadio , Genótipo , Programas de Imunização , Nasofaringe , Infecções Pneumocócicas , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/administração & dosagem , Estudos Transversais , Portugal/epidemiologia , Pré-Escolar , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Feminino , Masculino , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Lactente , Nasofaringe/microbiologia , Criança , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Prevalência , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/administração & dosagem , Testes de Sensibilidade MicrobianaRESUMO
The non-human primate (NHP) Leontopithecus rosalia is an endangered species native of Brazil and lives in forest fragments with different levels of contact with humans (natural, private and urban). Other NHPs - Callithrix spp. - were introduced by humans and co-exist and interact with the native species in these forests. To evaluate if living in or close to human-modified environments could constitute a risk for L. rosalia, we compared the prevalence, genetic background, antibiotic susceptibility and virulence gene content of staphylococci collected from the native and the introduced species from different forest fragments. We found that presence in human-dominated environments increased the colonization rate of L. rosalia with Mammaliicoccus sciuri (former Staphylococcus sciuri) from 18 % to 85 % (p = 0.0001) and of Callithrix spp with Staphylococcus aureus from 6 % to 100 % (p = 0.0001). According to molecular typing data obtained differences probably resulted from dissemination of these bacterial species from the invader NHP species and from humans. Changes in microbiota were paralleled by an increase in the prevalence of Panton-Valentine Leukocidin gene and in resistance to beta-lactams, macrolides and/or lincosamides as exposure to human environment increased. In particular, erythromycin resistance in S. aureus from Callithrix spp. increased from 0 % to 50 % and resistance rate to at least one antibiotic in coagulase-negative staphylococci species from L. rosalia increased from 13 % to 56 % (p = 0.0003). Our results showed that contact of native animal species with human-created environments increased the content of antimicrobial resistant and pathogenic bacteria on their commensal microbiota, which ultimately can impact on their health. IMPORTANCE: Endangered animal species are vulnerable to environmental alterations and human activities have been repeatedly identified as factors driving drastic changes in the natural landscape. It is extremely important to monitor changes in the environment surrounding protected species, because this could lead to early detection of any potential threats. In this study, we found that the contact of L. rosalia - a protected non-human primate from Brazil - with human environments is related to changes in their commensal microbiota. These included an increase in the number of pathogenic and antibiotic resistant bacteria, which have a higher potential to cause infections that are more difficult to treat. We provided evidence for the harmful impact human contact has on L. rosalia. Also, our results suggest that monitoring of commensal microbiota of protected animal species might be a useful way of sensing the risks of protected species to human exposure.
Assuntos
Antibacterianos , Infecções Estafilocócicas , Animais , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus/genética , Brasil/epidemiologia , Callithrix , Farmacorresistência Bacteriana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana/veterináriaRESUMO
(1) Background: With increasing international travel and mass population displacement due to war, famine, climate change, and immigration, pathogens, such as Staphylococcus aureus (S. aureus), can also spread across borders. Methicillin-resistant S. aureus (MRSA) most commonly causes skin and soft tissue infections (SSTIs), as well as more invasive infections. One clonal strain, S. aureus USA300, originating in the United States, has spread worldwide. We hypothesized that S. aureus USA300 would still be the leading clonal strain among US-born compared to non-US-born residents, even though risk factors for SSTIs may be similar in these two populations (2) Methods: In this study, 421 participants presenting with SSTIs were enrolled from six community health centers (CHCs) in New York City. The prevalence, risk factors, and molecular characteristics for MRSA and specifically clonal strain USA300 were examined in relation to the patients' self-identified country of birth. (3) Results: Patients born in the US were more likely to have S. aureus SSTIs identified as MRSA USA300. While being male and sharing hygiene products with others were also significant risks for MRSA SSTI, we found exposure to animals, such as owning a pet or working at an animal facility, was specifically associated with risk for SSTIs caused by MRSA USA300. Latin American USA300 variant (LV USA300) was most common in participants born in Latin America. Spatial analysis showed that MRSA USA300 SSTI cases were more clustered together compared to other clonal types either from MRSA or methicillin-sensitive S. aureus (MSSA) SSTI cases. (4) Conclusions: Immigrants with S. aureus infections have unique risk factors and S. aureus molecular characteristics that may differ from US-born patients. Hence, it is important to identify birthplace in MRSA surveillance and monitoring. Spatial analysis may also capture additional information for surveillance that other methods do not.
RESUMO
In Portugal, the 13-valent pneumococcal conjugate vaccine (PCV13) was available for private use from 2010 to 2015 and it was introduced in the National Immunization Program in 2015. We have reported that private use of PCV13 led to extensive serotype replacement and an increase in antimicrobial susceptibility among pneumococci carried by healthy children. We investigated which clonal changes concurred with these observations. A total of 657 pneumococcal strains, representative of a collection of 2,615 isolates, were genotyped by multilocus sequence typing (MLST). The isolates were recovered in 2009 to 2010 (pre-PCV13), 2011 to 2012 (early PCV13), and 2015 to 2016 (late PCV13) from children attending day care centers in two regions of Portugal (one urban, one rural). One-hundred seventy-one sequence types (STs) were identified, corresponding to 18 clonal complexes (CCs) and 58 singletons. Most CCs (n = 17) and several singletons (n = 16) were found in both regions, indicating that they were geographically disseminated. Clonal complexes expressing PCV13 serotypes in circulation in the late PCV13 period were a subset of the ones identified in the pre-PCV13 period and were often associated with antimicrobial resistance. Among those, the most frequent in both regions was CC179, a multidrug-resistant clone of serotype 19F. Serotype replacement, following PCV13 use, was mainly due to expansion of the susceptible lineages expressing non-PCV13 serotypes already in circulation in the pre-PCV13 period. The emergence of ST53, associated with serotype 8, a major cause of disease in several European countries, was observed in the rural region. Potential capsular switching events, unrelated to PCV13 use, were detected. This study improves our understanding of changes triggered by the private use of PCV13 in Portugal. IMPORTANCE Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen linked with high morbidity, mortality, and health care-associated costs worldwide. This bacterium often colonizes asymptomatically healthy children. Colonization is a prerequisite for disease and is also essential for transmission between individuals. The 13-valent pneumococcal conjugate vaccine targets 13 of 101 capsular types of pneumococci described to date. This vaccine not only prevents pneumococcal disease but also impacts colonization by decreasing the carriage of vaccine serotypes. Consequently, serotype replacement occurs. The clonal changes occurring during serotype replacement may be due to various mechanisms, such as clonal expansion, emergence, extinction, or capsular switch (vaccine escape). This study shows that in Portugal, the use of PCV13 has led to significant changes in clonal composition and that these were mainly due to the clonal expansion of lineages expressing serotypes not included in the vaccine.
RESUMO
Staphylococcus haemolyticus is one of the most important nosocomial human pathogens frequently isolated in bloodstream and medical device-related infections. However, its mechanisms of evolution and adaptation are still poorly explored. To characterize the strategies of genetic and phenotypic diversity in S. haemolyticus, we analyzed an invasive strain for genetic and phenotypic stability after serial passage in vitro in the absence and presence of beta-lactam antibiotics. We performed pulsed-field gel electrophoresis (PFGE) of the culture and analyzed five colonies at seven time points during stability assays for beta-lactam susceptibility, hemolysis, mannitol fermentation, and biofilm production. We compared their whole genomes and performed phylogenetic analysis based on core single-nucleotide polymorphisms (SNPs). We observed a high instability in the PFGE profiles at the different time points in the absence of antibiotic. Analysis of WGS data for individual colonies showed the occurrence of six large-scale genomic deletions within the oriC environ, smaller deletions in non-oriC environ regions, and nonsynonymous mutations in clinically relevant genes. The regions of deletion and point mutations included genes encoding amino acid and metal transporters, resistance to environmental stress and beta-lactams, virulence, mannitol fermentation, metabolic processes, and insertion sequence (IS) elements. Parallel variation was detected in clinically significant phenotypic traits such as mannitol fermentation, hemolysis, and biofilm formation. In the presence of oxacillin, PFGE profiles were overall stable over time and mainly corresponded to a single genomic variant. Our results suggest that S. haemolyticus populations are composed of subpopulations of genetic and phenotypic variants. The maintenance of subpopulations in different physiological states may be a strategy to adapt rapidly to stress situations imposed by the host, particularly in the hospital environment. IMPORTANCE The introduction of medical devices and antibiotics into clinical practice have substantially improved patient quality of life and contributed to extended life expectancy. One of its most cumbersome consequences was the emergence of medical device-associated infections caused by multidrug-resistant and opportunistic bacteria such as Staphylococcus haemolyticus. However, the reason for this bacterium's success is still elusive. We found that in the absence of environmental stresses, S. haemolyticus can spontaneously produce subpopulations of genomic and phenotypic variants with deletions/mutations in clinically relevant genes. However, when exposed to selective pressures, such as the presence of antibiotics, a single genomic variant will be recruited and become dominant. We suggest that the maintenance of these cell subpopulations in different physiological states is an extremely effective strategy to adapt to stresses imposed by the host or the infection environment and might contribute for S. haemolyticus survival and persistence in the hospital.
RESUMO
OBJECTIVES: In this study, we aimed to assess the extent of dissemination of methicillin-resistant Mammaliicoccus sciuri in animal farms in Tunisia and evaluate the distribution of virulence and methicillin resistance genes in the M. sciuri population. METHODS: Staphylococci and mammaliicocci isolated from unhealthy animals and healthy humans from adjacent farms in Tunisia were characterized for antimicrobial susceptibility, biofilm formation, agglutination, and hemolysis abilities. Mammaliicoccus sciuri relatedness and content in antibiotic resistance and virulence genes were analyzed by whole-genome sequencing (WGS). RESULTS: Mammaliicoccus sciuri was the most prevalent species (46.2%), showing the highest resistance rates to fusidic acid (94.6%), oxacillin (73%), penicillin (40.5%), clindamycin (37%), ciprofloxacin (27%), and cefoxitin (24.3%). Some isolates carried genes encoding resistance to nine different antibiotic classes. mecA was found in 35% of M. sciuri and mecC in 16.2%. All isolates carrying mecC were of S. sciuri subspecies carnaticus and carried the hybrid element SCCmec-mecC. Mammaliicoccus sciuri were able to produce strong biofilm (27%) and have clumping ability (16%). Additionally, they carried genes for capsule production (cap8, 100%), iron-regulated surface determinants (isdE, 24%; isdG, 3%), and virulence regulation (clpC and clpP, 100%). Single nucleotide polymorphisms (SNPs) analysis showed that 17 M. sciuri cross-transmission events probably occurred between different animal species and farms. Moreover, SCCmec was estimated to have been acquired five times by S. sciuri subsp. carnaticus. CONCLUSION: Multidrug resistant and pathogenic M. sciuri were frequently disseminated between different animal species within the farm environment. mecA and mecC can be disseminated by both frequent acquisition of the SCCmec element and clonal dissemination.
Assuntos
Animais Domésticos , Resistência a Meticilina , Animais , Humanos , Resistência a Meticilina/genética , Tunísia , StaphylococcusRESUMO
In a study of antibiotic resistance in Staphylococcus aureus, specific cell wall mutants were previously generated for the peptidoglycan biosynthesis gene murF, by the insertion of an integrative plasmid. A collection of 30 independent mutants was obtained, and all harbored a variable number of copies of the inserted plasmid, arranged in tandem in the chromosome. Of the 30 mutants, only 3, F9, F20 and F26, with a lower number of plasmid copies, showed an altered peptidoglycan structure, lower resistance to ß-lactams and a different loss-of-function mutation in rho gene, that encodes a transcription termination factor. The rho mutations were found to correlate with the level of oxacillin resistance, since genetic complementation with rho gene reestablished the resistance and cell wall parental profile in F9, F20 and F26 strains. Furthermore, complementation with rho resulted in the amplification of the number of plasmid tandem repeats, suggesting that Rho enabled events of recombination that favored a rearrangement in the chromosome in the region of the impaired murF gene. Although the full mechanism of reversion of the cell wall damage was not fully elucidated, we showed that Rho is involved in the recombination process that mediates the tandem amplification of exogeneous DNA fragments inserted into the chromosome. IMPORTANCE The cell wall of bacteria, namely, peptidoglycan, is the target of several antibiotic classes such as ß-lactams. Staphylococcus aureus is well known for its capacity to adapt to antibiotic stress and develop resistance strategies, namely, to ß-lactams. In this context, the construction of cell wall mutants provides useful models to study the development of such resistance mechanisms. Here, we characterized a collection of independent mutants, impaired in the same peptidoglycan biosynthetic step, obtained through the insertion of a plasmid in the coding region of murF gene. S. aureus demonstrated the capacity to overcome the cell wall damage by amplifying the copy number of the inserted plasmid, through an undescribed mechanism that involves the Rho transcription termination factor.
Assuntos
Parede Celular , Genoma Bacteriano , Staphylococcus aureus , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamas/análise , Parede Celular/química , Testes de Sensibilidade Microbiana , Oxacilina/análise , Peptidoglicano/química , Staphylococcus aureus/genética , Amplificação de GenesRESUMO
The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in Portugal is worrisome and among the highest in Europe. Surprisingly, MRSA prevalence in the community was described as very low (<2%) based on studies that used classical culture-based methods (CCBM). We investigated whether the apparent limited spread of MRSA in the community in Portugal might result from low sensitivity of CCBM. Nasopharyngeal- and oropharyngeal-paired samples obtained from senior adults living in nursing (n = 299) or family homes (n = 300) previously characterized by CCBM were reanalyzed. Samples were inoculated in a semi-selective enrichment medium, and those showing visible growth were evaluated by qPCR targeting nuc, mecA, and mecC genes (SSE+qPCR). By SSE+qPCR, 34 of the 1,198 (2.8%) samples were MRSA positive compared with 21 (1.8%) by CCBM. SSE+qPCR improved non-significantly detection of MRSA carriers from 5.4% to 8.0% (p = 0.12) in the nursing home collection, and from 0.3% to 1.7% (p = 0.13) in the family home collection. MRSA isolates belonged to three HA-MRSA clones widely disseminated in Portuguese hospitals. In conclusion, use of semi-selective medium combined with qPCR did not change the overall scenario previously described. In Portugal, MRSA circulation in the community among senior adults is low.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Adulto , Idoso , Antibacterianos/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Portugal/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções Estafilocócicas/epidemiologiaRESUMO
The acquisition of the resistance determinant mecA by Staphylococcus aureus is of major clinical importance, since it confers a resistant phenotype to virtually the entire large family of structurally diverse ß-lactam antibiotics. While the common resistance determinant mecA is essential, the optimal expression of the resistance phenotype also requires additional factors. Previous studies showed that the great majority of clinical isolates of methicillin-resistant S. aureus (MRSA) have a heterogeneous resistant phenotype, and we observed that strains carrying methicillin genetic determinants other than mecA also produce similar heterogeneous phenotypes. All these strains were able to express high and homogeneous levels of oxacillin resistance when sub-inhibitory concentrations of mupirocin, an effector of the stringent stress response, were added to growth media. Our studies show that the gene gmk, involved in guanine metabolism, was one of the first genes to exhibit mutations in homoresistant (H*R) derivatives obtained through serial passages (with increasing concentrations of oxacillin) of the prototype mecC-carrying MRSA strain LGA251. All these observations led us to propose that a common molecular mechanism for the establishment of high and homogeneous oxacillin resistance must be present among isolates carrying different methicillin resistance determinants. In this work, we tested this hypothesis using whole-genome sequencing (WGS) to compare isogenic populations differing only in their degrees of oxacillin resistance and carrying various methicillin genetic determinants.
RESUMO
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two ß-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.
Assuntos
Antibacterianos/história , Arthrodermataceae/metabolismo , Ouriços/metabolismo , Ouriços/microbiologia , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Seleção Genética/genética , Animais , Antibacterianos/metabolismo , Arthrodermataceae/genética , Dinamarca , Europa (Continente) , Evolução Molecular , Mapeamento Geográfico , História do Século XX , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Nova Zelândia , Saúde Única , Penicilinas/biossíntese , Filogenia , beta-Lactamas/metabolismoRESUMO
Recurrent skin and soft tissue infections (SSTI) caused by Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) or Methicillin-Sensitive Staphylococcus aureus (CA-MSSA) present treatment challenges. This community-based trial examined the effectiveness of an evidence-based intervention (CDC Guidelines, topical decolonization, surface decontamination) to reduce SSTI recurrence, mitigate household contamination/transmission, and improve patient-reported outcomes. Participants (n = 186) were individuals with confirmed MRSA(+)/MSSA(+) SSTIs and their household members. During home visits; Community Health Workers/Promotoras provided hygiene instructions; a five-day supply of nasal mupirocin; chlorhexidine for body cleansing; and household disinfecting wipes (Experimental; EXP) or Usual Care Control (UC CON) pamphlets. Primary outcome was six-month SSTI recurrence from electronic health records (EHR). Home visits (months 0; 3) and telephone assessments (months 0; 1; 6) collected self-report data. Index patients and participating household members provided surveillance culture swabs. Secondary outcomes included household surface contamination; household member colonization and transmission; quality of life; and satisfaction with care. There were no significant differences in SSTI recurrence between EXP and UC in the intent-to-treat cohort (n = 186) or the enrolled cohort (n = 119). EXP participants showed reduced but non-significant colonization rates. EXP and UC did not differ in household member transmission, contaminated surfaces, or patient-reported outcomes. This intervention did not reduce clinician-reported MRSA/MSSA SSTI recurrence. Taken together with other recent studies that employed more intensive decolonization protocols, it is possible that a promotora-delivered intervention instructing treatment for a longer or repetitive duration may be effective and should be examined by future studies.
RESUMO
Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-ß-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal , Elementos de DNA Transponíveis , Genes Bacterianos/genética , Alemanha , Humanos , Macrolídeos/farmacologia , Filogenia , Vacinas Pneumocócicas , Sorogrupo , Sorotipagem , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genéticaRESUMO
Biofilm formation has been shown to be critical to the success of uropathogens. Although Staphylococcus saprophyticus is a common cause of urinary tract infections, its biofilm production capacity, composition, genetic basis, and origin are poorly understood. We investigated biofilm formation in a large and diverse collection of S. saprophyticus (n = 422). Biofilm matrix composition was assessed in representative strains (n = 63) belonging to two main S. saprophyticus lineages (G and S) recovered from human infection, colonization, and food-related environment using biofilm detachment approach. To identify factors that could be associated with biofilm formation and structure variation, we used a pangenome-wide association study approach. Almost all the isolates (91%; n = 384/422) produced biofilm. Among the 63 representative strains, we identified eight biofilm matrix phenotypes, but the most common were composed of protein or protein-extracellular DNA (eDNA)-polysaccharides (38%, 24/63 each). Biofilms containing protein-eDNA-polysaccharides were linked to lineage G and environmental isolates, whereas protein-based biofilms were produced by lineage S and infection isolates (p < 0.05). Putative biofilm-associated genes, namely, aas, atl, ebpS, uafA, sasF, sasD, sdrH, splE, sdrE, sdrC, sraP, and ica genes, were found with different frequencies (3-100%), but there was no correlation between their presence and biofilm production or matrix types. Notably, icaC_1 was ubiquitous in the collection, while icaR was lineage G-associated, and only four strains carried a complete ica gene cluster (icaADBCR) except one that was without icaR. We provided evidence, using a comparative genomic approach, that the complete icaADBCR cluster was acquired multiple times by S. saprophyticus and originated from other coagulase-negative staphylococci. Overall, the composition of S. saprophyticus biofilms was distinct in environmental and clinical isolates, suggesting that modulation of biofilm structure could be a key step in the pathogenicity of these bacteria. Moreover, biofilm production in S. saprophyticus is ica-independent, and the complete icaADBCR was acquired from other staphylococci.
RESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) has long been known as a major cause of hospital-acquired (HA-MRSA) infections worldwide. For the past twenty years, an increasing number of studies have described its emergence in the community as well. In Portugal, a country with a high-prevalence of HA-MRSA, there are only limited data available on the epidemiology of MRSA in the community. We studied the prevalence of S. aureus and MRSA colonization among healthy adults in Portugal. Between February 2015 and December 2016, a longitudinal study was conducted in which 87 adults aged 25-50 years old were followed for six months. For each participant nasopharyngeal, oropharyngeal and saliva samples were obtained monthly and, in some cases, weekly. A total of 1,578 samples (n = 526 for each sampling site) were examined for the presence of S. aureus and MRSA by classical culture-based methods. Fifty-seven adults (65.5%) carried S. aureus at least once during the six months period of the study: 19.5% were persistent S. aureus carriers and 46.0% were intermittent carriers. Carriage rates per sampling site were 20.5% in nasopharynx, 18.3% in oropharynx, and 13.5% in saliva. Simultaneous screening of the three sampling sites increased detection of S. aureus, which overall occurred in 34.4% of the 526 sampling time-points. No MRSA were isolated. In conclusion, this study adds novel information about the MRSA scenario in the Portuguese community. Our results indicate that, in Portugal, MRSA does not seem to circulate among healthy adults without risk factors and therefore this age group does not constitute, at the current time, a reservoir of MRSA in the community.
Assuntos
Portador Sadio/epidemiologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/epidemiologia , Adulto , Portador Sadio/diagnóstico , Portador Sadio/microbiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Nasofaringe/microbiologia , Orofaringe/microbiologia , Portugal/epidemiologia , Prevalência , Saliva/microbiologia , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologiaRESUMO
In Portugal, the 13-valent pneumococcal conjugate vaccine (PCV13) was commercially available between 2010 and 2015, following a decade of private use of PCV7. We evaluated changes on serotype distribution and antimicrobial susceptibility of pneumococci carried by children living in two regions of Portugal (one urban and one rural). Three epidemiological periods were defined: pre-PCV13 (2009-2010), early-PCV13 (2011-2012), and late-PCV13 (2015-2016). Nasopharyngeal samples (n = 4,232) were obtained from children 0-6 years old attending day-care centers. Private use of PCVs was very high in both regions (>75%). Pneumococcal carriage remained stable and high over time (62.1%, 62.4% and 61.6% (p = 0.909) in the urban region; and 59.8%, 62.8%, 59.5% (p = 0.543) in the rural region). Carriage of PCV7 serotypes remained low (5.3%, 7.8% and 4.3% in the urban region; and 2.5%, 3.7% and 4.8% in the rural region). Carriage of PCV13 serotypes not targeted by PCV7 decreased in both the urban (16.4%, 7.3%, and 1.6%; p < 0.001) and rural regions (13.2%, 7.8%, and 1.9%; p < 0.001). This decline was mostly attributable to serotype 19A (14.1%, 4.4% and 1.3% in the urban region; and 11.1%, 3.6% and 0.8% in the rural region, both p < 0.001). Serotype 3 declined over time in the urban region (10.1%, 4.4%, 0.8%; p < 0.001) and had no obvious trend in the rural region (4.2%, 6.7%, 2.4%; p = 0.505). Serotype 6C decreased in both regions while serotypes 11D, 15A/B/C, 16F, 21, 22F, 23A/B, 24F, 35F, and NT were the most prevalent in the late-PCV13 period. Intermediate resistance to penicillin and non-susceptibility to erythromycin decreased significantly in both regions (19.5%, 13.3%, and 9.3%; and 25.4%, 25.9%, and 13.4%; both p < 0.001, respectively in the urban region; and 12.4%, 11.1%, and 2.8% (p < 0.001); and 15.3%, 14.7%, and 9.2% (p = 0.037), respectively, in the rural region). In conclusion, private use of PCV13 led to significant changes on the pneumococcal population carried by children in Portugal.
Assuntos
Infecções Pneumocócicas , Portador Sadio/epidemiologia , Criança , Pré-Escolar , Farmacorresistência Bacteriana , Humanos , Lactente , Recém-Nascido , Nasofaringe , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Portugal/epidemiologia , Sorogrupo , Vacinas ConjugadasRESUMO
OBJECTIVES: Surveillance studies for Staphylococcus aureus carriage are a primary tool to survey the prevalence of methicillin-resistant S. aureus (MRSA) in the general population, patients and healthcare workers. We have previously reported S. aureus carriage in various African countries, including Cape Verde. METHODS: Whole-genome sequences of 106 S. aureus isolates from Cape Verde were determined. RESULTS: Staphylococcus aureus carriage isolates in Cape Verde show high genetic variability, with the detection of 27 sequence types (STs) and three primary genetic clusters associated with ST152, ST15 and ST5. One transmission event with less than eight core-genome single nucleotide polymorphisms (cgSNP) differences was detected among the ST5-VI MRSA lineage. Genetic analysis confirmed the phenotypic resistance and allowed the identification of six independent events of plasmid or transposon loss associated with the deletion of blaZ in nine isolates. In the four ST5 MRSA isolates, loss of the blaZ plasmid coincided with the acquisition of SCCmec type VI and an unusual penicillin phenotype with a minimum inhibitory concentration (MIC) at the breakpoint, indicating an adaptation trend in this endemic lineage. Similar events of blaZ plasmid loss, with concomitant acquisition SCCmec elements, were detected among ST5 isolates from different geographical origins. CONCLUSION: Overall, the genome data allowed to place isolates in a phylogenetic context and to identify different blaZ gene deletions associated with plasmid or transposon loss. Genomic analysis unveiled adaptation and evolution trends, namely among emerging MRSA lineages in the country, which deserve additional consideration in the design of future infection control protocols.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Cabo Verde , Células Clonais , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Filogenia , Staphylococcus aureusRESUMO
Staphylococcus saprophyticus is a common pathogen of the urinary tract, a heavy metal-rich environment, but information regarding its heavy metal resistance is unknown. We investigated 422 S. saprophyticus isolates from human infection and colonization/contamination, animals, and environmental sources for resistance to copper, zinc, arsenic, and cadmium using the agar dilution method. To identify the genes associated with metal resistance and assess possible links to pathogenicity, we accessed the whole-genome sequence of all isolates and used in silico and pangenome-wide association approaches. The MIC values for copper and zinc were uniformly high (1,600 mg/liter). Genes encoding copper efflux pumps (copA, copB, copZ, mco, and csoR) and zinc transporters (zinT, czrAB, znuBC, and zur) were abundant in the population (20 to 100%). Arsenic and cadmium showed various susceptibility levels. Genes encoding the ars operon (arsRDABC), an ABC transporter and a two-component permease, were linked to resistance to arsenic (MICs ≥ 1,600 mg/liter; 14% [58/422]; P < 0.05). At least three cad genes (cadA or cadC and cadD-cadX or czrC) and genes encoding multidrug efflux pumps and hyperosmoregulation in acidified conditions were associated with resistance to cadmium (MICs ≥ 200 mg/liter; 20% [85/422]; P < 0.05). These resistance genes were frequently carried by mobile genetic elements. Resistance to arsenic and cadmium were linked to human infection and a clonal lineage originating in animals (P < 0.05). Altogether, S. saprophyticus was highly resistant to heavy metals and accumulated multiple metal resistance determinants. The highest arsenic and cadmium resistance levels were associated with infection, suggesting resistance to these metals is relevant for S. saprophyticus pathogenicity.
Assuntos
Arsênio , Metais Pesados , Animais , Cádmio , Cobre , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus saprophyticusRESUMO
Staphylococcus saprophyticus is a primary cause of community-acquired urinary tract infections (UTIs) in young women. S. saprophyticus colonizes humans and animals but basic features of its molecular epidemiology are undetermined. We conducted a phylogenomic analysis of 321 S. saprophyticus isolates collected from human UTIs worldwide during 1997-2017 and 232 isolates from human UTIs and the pig-processing chain in a confined region during 2016-2017. We found epidemiologic and genomic evidence that the meat-production chain is a major source of S. saprophyticus causing human UTIs; human microbiota is another possible origin. Pathogenic S. saprophyticus belonged to 2 lineages with distinctive genetic features that are globally and locally disseminated. Pangenome-wide approaches identified a strong association between pathogenicity and antimicrobial resistance, phages, platelet binding proteins, and an increased recombination rate. Our study provides insight into the origin, transmission, and population structure of pathogenic S. saprophyticus and identifies putative new virulence factors.