Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Netw Syst Med ; 4(1): 2-50, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33659919

RESUMO

Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields. Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references. Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic.

2.
Brief Bioinform ; 22(2): 1543-1559, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33197934

RESUMO

Systems medicine (SM) has emerged as a powerful tool for studying the human body at the systems level with the aim of improving our understanding, prevention and treatment of complex diseases. Being able to automatically extract relevant features needed for a given task from high-dimensional, heterogeneous data, deep learning (DL) holds great promise in this endeavour. This review paper addresses the main developments of DL algorithms and a set of general topics where DL is decisive, namely, within the SM landscape. It discusses how DL can be applied to SM with an emphasis on the applications to predictive, preventive and precision medicine. Several key challenges have been highlighted including delivering clinical impact and improving interpretability. We used some prototypical examples to highlight the relevance and significance of the adoption of DL in SM, one of them is involving the creation of a model for personalized Parkinson's disease. The review offers valuable insights and informs the research in DL and SM.


Assuntos
Aprendizado Profundo , Análise de Sistemas , Algoritmos , Biomarcadores/metabolismo , Doença/classificação , Registros Eletrônicos de Saúde , Genômica , Humanos , Metabolômica , Redes Neurais de Computação , Medicina de Precisão/métodos , Proteômica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA