Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616214

RESUMO

Chemical composition of the essential oils (EOs) from the leaves of five Annonaceae species found in the amazon region was analyzed by Gas chromatography coupled to mass spectrometry. The antifungal activity of theses EOs was tested against Candida albicans, Candida auris, Candida famata, Candida krusei and Candida tropicalis. In addition, an in silico study of the molecular interactions was performed using molecular modeling approaches. Spathulenol (29.88%), α-pinene (15.73%), germacra-4(15),5,10(14)-trien-1-α-ol (6.65%), and caryophylene oxide (6.28%) where the major constitents from the EO of Anaxagorea dolichocarpa. The EO of Duguetia echinophora was characterized by ß-phellanderene (24.55%), cryptone (12.43%), spathulenol (12.30%), and sabinene (7.54%). The major compounds of the EO of Guatteria scandens where ß-pinene (46.71%), α-pinene (9.14%), bicyclogermacrene (9.33%), and E-caryophyllene (8.98%). The EO of Xylopia frutescens was characterized by α-pinene (40.12%) and ß-pinene (36.46%). Spathulenol (13.8%), allo-aromadendrene epoxide (8.99%), thujopsan-2-α-ol (7.74%), and muurola-4,10(14)-dien-1-ß-ol (7.14%) were the main chemical constituents reported in Xylopia emarginata EO. All EOs were active against the strains tested and the lowest inhibitory concentrations were observed for the EOs of D. echinophora, X. emarginata, and X. frutescens against C. famata the Minimum Inhibitory Concentration values of 0.07, 0.019 and 0.62 µL.mL-1, respectively. The fungicidal action was based on results of minimum fungicidal concentration and showed that the EOs showed fungicide activity against C. tropicalis (2.5 µL.mL-1), C. krusei (2.5 µL.mL-1) and C. auris (5 µL.mL-1), respectively. The computer simulation results indicated that the major compounds of the EOs can interact with molecular targets of Candida spp.


Assuntos
Annonaceae , Simulação por Computador , Cromatografia Gasosa-Espectrometria de Massas , Candida tropicalis
2.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985605

RESUMO

The essential oils (EOs) of Guatteria schomburgkiana (Gsch) and Xylopia frutescens (Xfru) (Annonaceae) were obtained by hydrodistillation, and their chemical composition was evaluated by gas chromatography-mass spectrometry (GC/MS). Herbicide activity was measured by analyzing the seed germination percentage and root and hypocotyl elongation of two invasive species: Mimosa pudica and Senna obtusifolia. The highest yield was obtained for the EO of Xfru (1.06%). The chemical composition of Gsch was characterized by the presence of the oxygenated sesquiterpenes spathulenol (22.40%) and caryophyllene oxide (14.70%). Regarding the EO of Xfru, the hydrocarbon monoterpenes α-pinene (35.73%) and ß-pinene (18.90%) were the components identified with the highest concentrations. The germination of seeds of S. obtusifolia (13.33 ± 5.77%) showed higher resistance than that of seeds of M. pudica (86.67 ± 5.77%). S. obtusifolia was also more sensitive to the EO of Xfru in terms of radicle (55.22 ± 2.72%) and hypocotyl (71.12 ± 3.80%) elongation, while M. pudica showed greater sensitivity to the EO of Gsch. To screen the herbicidal activity, the molecular docking study of the major and potent compounds was performed against 4-hydroxyphenylpyruvate dioxygenase (HPPD) protein. Results showed good binding affinities and attributed the strongest inhibitory activity to δ-cadinene for the target protein. This work contributes to the study of the herbicidal properties of the EOs of species of Annonaceae from the Amazon region.


Assuntos
Annonaceae , Guatteria , Óleos Voláteis , Xylopia , Annonaceae/química , Xylopia/química , Guatteria/química , Óleos Voláteis/química , Brasil , Simulação de Acoplamento Molecular , Folhas de Planta/química
3.
Nat Prod Res ; 37(19): 3344-3351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35481816

RESUMO

In the present study, are extracted volatile concentrate from Ipomoea asarifolia Poir. and Ipomoea setifera (Desr.) Roem. & Schult. in five-month seasonal gradient. The flowers were subjected to simultaneous distillation - extraction (SDE). The chemical composition of the volatile concentrate was determined by gas chromatography (CG/MS) and (CG-FID). Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) were performed with the chemical constituents. It was observed that the chemical composition of I. asarifolia varied more with seasonality in relation to the species I. setifera. Furthermore, there is a possibility that germacrene D and α-copaene, the main components of the variation volatile of I. asarifolia and with higher concentrations in the rainy months, have ecological importance, attracting specific pollinators for the rainy season. This is the first study to report the chemical composition of the volatile compounds of I. asarifolia and I. setifera along a seasonal gradient.

4.
Antioxidants (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36552618

RESUMO

Croton campinarensis Secco, A. Rosário & PE Berry is an aromatic species recently discovered in the Amazon region. This study first reports the chemical profile, antioxidant capacity, and preliminary toxicity to A. salina Leach of the essential oil (EO) of this species. The phytochemical profile of the essential oil was analyzed by gas chromatography (GC/MS) and (GC-FID). The antioxidant capacity of the EO was measured by its inhibition of ABTS•+ and DPPH• radicals. Molecular modeling was used to evaluate the mode of interaction of the major compounds with acetylcholinesterase (AChE). The results indicate that the EO yield was 0.24%, and germacrene D (26.95%), bicyclogermacrene (17.08%), (E)-caryophyllene (17.06%), and δ-elemene (7.59%) were the major compounds of the EO sample. The EO showed a TEAC of 0.55 ± 0.04 mM·L-1 for the reduction of the ABTS•+ radical and 1.88 ± 0.08 mM·L-1 for the reduction of the DPPH• radical. Regarding preliminary toxicity, the EO was classified as toxic in the bioassay with A. salina (LC50 = 20.84 ± 4.84 µg·mL-1). Through molecular docking, it was found that the majority of the EO components were able to interact with the binding pocket of AChE, a molecular target related to toxicity evaluated in A. salina models; the main interactions were van der Waals and π-alkyl interactions.

5.
Antioxidants (Basel) ; 11(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290799

RESUMO

The essential oils (EOs) of Myrciaria floribunda (Mflo) and Myrcia sylvatica (Msyl) (Myrtaceae) were obtained by hydrodistillation. The analysis of volatile constituents was performed by GC/MS. Preliminary toxicity was assessed on Artemia salina Leach. The antioxidant capacity was measured by the ABTS•+ and DPPH• radical inhibitory activities. The results indicate that the Mflo EO had the highest yield (1.02%), and its chemical profile was characterized by high levels of hydrocarbon (65.83%) and oxygenated (25.74%) monoterpenes, especially 1,8-cineole (23.30%), terpinolene (22.23%) and α-phellandrene (22.19%). Regarding the Msyl EO, only hydrocarbon (51.60%) and oxygenated (46.52%) sesquiterpenes were identified in the sample, with (Z)-α-trans-bergamotene (24.57%), α-sinensal (13.44%), and (Z)-α-bisabolene (8.33%) at higher levels. The EO of Mflo exhibited moderate toxicity against A. salina (LC50 = 82.96 ± 5.20 µg.mL−1), while the EO of Msyl was classified as highly toxic (LC50 = 2.74 ± 0.50 µg.mL−1). In addition, relative to Trolox, the EOs of Mflo and Msyl showed significant inhibitory effects (p < 0.0001) against the DPPH• radical. This study contributes to the expansion of chemical and biological knowledge on the EOs of Myrtaceae species from the Amazon region.

6.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080231

RESUMO

The Myrtaceae family is one of the most representative in the Amazon. Several species have high added-value pharmacological potential. In order to contribute to the knowledge of the aromatic profile of Myrtaceae species from the Amazon, the present study presents the first report on the productivity, chemical composition, and antioxidant profile of the essential oil (EO) of Myrcia paivae. Dry leaves of the species were submitted to hydrodistillation to obtain their EO. The EO performance was calculated on a moisture-free basis and the analysis of the chemical profile was carried out by GC/MS. The determination of the antioxidant capacity was assessed by means of the antioxidant capacity equivalent to the inhibition Trolox of the ABTS•+ and DPPH• radicals. The results indicate that EO performance was equivalent to 1.69%. As for the chemical composition, hydrocarbon monoterpenes were predominant in the sample (>77%); terpinolene (14.70%), α-phellandrene (14.69%), γ-terpinene (9.64%), sylvestrene (7.62%), α-thujene (6.46%), and α-pinene (6.39%) were the constituents with higher content. Regarding the antioxidant capacity, the results show that the EO presented good results in the inhibition of ABTS•+ (0.886 ± 0.226 mM L−1) and DPPH• (2.90 ± 0.083 mM L−1), which can be attributed to the high monoterpene content in the sample.


Assuntos
Myrtaceae , Óleos Voláteis , Antioxidantes/química , Monoterpenos/análise , Myrtaceae/química , Óleos Voláteis/química , Extratos Vegetais/química , Folhas de Planta/química
7.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139777

RESUMO

The essential oils (EOs) of Duguetia echinophora, D. riparia, Xylopia emarginata and X. frutescens (Annonaceae) were obtained by hydrodistillation and the chemical composition was analyzed by GC-MS. An antioxidant assay using the ABTS and DPPH radicals scavenging method and cytotoxic assays against Artemia salina were also performed. We evaluated the interaction of the major compounds of the most toxic EO (X. emarginata) with the binding pocket of the enzyme Acetylcholinesterase, a molecular target related to toxicity in models of Artemia salina. The chemical composition of the EO of D. echinophora was characterized by ß-phellandrene (39.12%), sabinene (17.08%) and terpinolene (11.17%). Spathulenol (22.22%), caryophyllene oxide (12.21%), humulene epoxide II (11.86%) and allo-aromadendrene epoxide (10.20%) were the major constituents of the EO from D. riparia. Spathulenol (5.65%) and caryophyllene oxide (5.63%) were the major compounds of the EO from X. emarginata. The EO of X. frutescens was characterized by α-pinene (20.84%) and byciclogermacrene (7.85%). The results of the radical scavenger DPPH assays ranged from 15.87 to 69.38% and the highest percentage of inhibition was observed for the EO of X. emarginata, while for ABTS radical scavenging, the antioxidant capacity of EOs varied from 14.61 to 63.67%, and the highest percentage of inhibition was observed for the EO of X. frutescens. The EOs obtained from D. echinophora, X. emarginata and X. frutescens showed high toxicity, while the EO of D. riparia was non-toxic. Because the EO of X. emarginata is the most toxic, we evaluated how its major constituents were able to interact with the Acetylcholinesterase enzyme. The docking results show that the compounds are able to bind to the binding pocket through non-covalent interactions with the residues of the binding pocket. The species X. emarginata and X. frutescens are the most promising sources of antioxidant compounds; in addition, the results obtained for preliminary cytotoxicity of the EOs of these species may also indicate a potential biological activity.

8.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889245

RESUMO

Essential oils are biosynthesized in the secondary metabolism of plants, and in their chemical composition, they can be identified different classes of compounds with potential antioxidant and biological applications. Over the years in the Amazon, several species of aromatic plants were discovered and used in traditional medicine. The literature has shown that essential oils extracted from amazon species have several biological activities, such as antioxidant, antibacterial, antifungal, cytotoxic, and antiprotozoal activities. These activities are related to the diversified chemical composition found in essential oils that, by synergism, favors its pharmacological action. In light of this vital importance, this study aimed at performing a review of the literature with particular emphasis on the chemical composition and biological activities in studies conducted with species collected in the Amazon, taking into consideration in particular the last 10 years of collection and research.


Assuntos
Óleos Voláteis , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Brasil , Óleos Voláteis/química , Óleos Voláteis/farmacologia
9.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897853

RESUMO

The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH•) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by ß-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B's EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs' antioxidant in DPPH• was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor-ligand complex.


Assuntos
Herbicidas , Myrtaceae , Óleos Voláteis , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/farmacologia , Simulação de Acoplamento Molecular , Myrtaceae/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
10.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830022

RESUMO

The present work involves a systematic review of the chemical composition and biological effects of essential oils from the Annonaceae species collected in Brazil from 2011 to 2021. Annonaceae is one of the most important botanical families in Brazil, as some species have economic value in the market as local and international fruit. In addition, the species have useful applications in several areas-for instance, as raw materials for use in cosmetics and perfumery and as medicinal plants. In folk medicine, species such as Annona glabra L. and Xylopia sericea A. St.-Hil. are used to treat diseases such as rheumatism and malaria. The species of Annonaceae are an important source of essential oils and are rich in compounds belonging to the classes of mono and sesquiterpenes; of these compounds, α-pinene, ß-pinene, limonene, (E)-caryophyllene, bicyclogermacrene, caryophyllene oxide, germacrene D, spathulenol, and ß-elemene are the most abundant. The antimicrobial, anti-inflammatory, antileishmania, antioxidant, antiproliferative, cytotoxic, larvicidal, trypanocidal, and antimalarial activities of essential oils from the Annonaceae species in Brazil have been described in previous research, with the most studies on this topic being related to their antiproliferative or cytotoxic activities. In some studies, it was observed that the biological activity reported for these essential oils was superior to that of drugs available on the market, as is the case of the essential oil of the species Guatteria punctata (Aubl.) R. A. Howard., which showed a trypanocidal effect that was 34 times stronger than that of the reference drug benznidazol.


Assuntos
Annonaceae/química , Óleos Voláteis/química , Compostos Fitoquímicos/química , Antibacterianos/química , Antibacterianos/uso terapêutico , Brasil , Humanos , Óleos Voláteis/uso terapêutico , Folhas de Planta/química , Sesquiterpenos Policíclicos/química , Sesquiterpenos/química , Sesquiterpenos de Germacrano/química
11.
Toxicon ; 195: 111-118, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667485

RESUMO

Convolvulaceae Juss. is a family of vines and shrubs composed of species of ecological and economic importance. Ipomoea asarifolia (Desr.) Roem. & Schult. and I. setifera Poir. are ruderal and evergreen weeds that invade pastures and cause intoxication in cattle during the dry season. In the present study, the essential oils (EOs) of the leaves from I. setifera (dry season) and I. asarifolia (dry and wet seasons) were obtained by steam distillation for 3h. The chemical composition of the EOs was determined using gas chromatography coupled to gas spectrometry (CG/MS) and gas chromatography with flame ionization detector (CG-FID). To correlate the toxicity of the major chemical constituents of I. setifera and I. asarifolia EOs, we predicted the inhibition activity against the cytochrome P450 (CYP450) and P-glycoprotein 1 (P-gp) using a machine learning-based (ML-based) algorithm. In silico analyses were also applied to evaluate the pharmacokinetics properties related to the penetration in the blood-brain barrier (BBB) and gastrointestinal absorption. The chemical composition of the EO of I. setifera was characterized by high levels of (E)-caryophyllene (36.7%) and ß-elemene (20.49%). The I. asarifolia EO showed a phytol derivative as the main chemical constituent in the dry season (35.49%), and its content was reduced in the sample collected during the wet season (10.67%). The constituent (E)-caryophyllene was also present in the leaves of I. asarifolia, but at lower levels (15.93-19.93%) when compared to the EOs of I. setifera. Our computational analyses indicated that the constituents caryophyllene oxide, cedroxyde, pentadecanal, and phytol can be related to the toxicity of these weeds. This is the first study to report the chemical composition of I. asarifolia and I. setifera EOs and correlate their molecular mechanism of toxicity using in silico approaches.


Assuntos
Ipomoea , Óleos Voláteis , Animais , Bovinos , Simulação por Computador , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/toxicidade , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA