Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Biochem Funct ; 41(4): 490-500, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37170672

RESUMO

Phenylketonuria (PKU) was the first genetic disease to have an effective therapy, which consists of phenylalanine intake restriction. However, there are patients who do not adhere to treatment and/or are not submitted to neonatal screening. PKU patients present L-carnitine (L-car) deficiency, compound that has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. This study evaluated the effect caused by exposure time to high Phe levels in PKU patients at early and late diagnosis, through pro- and anti-inflammatory cytokines, as well as the L-car effect in patients under treatment. It was observed that there was a decrease in phenylalanine levels in treated patients compared to patients at diagnosis, and an increase in L-car levels in the patients under treatment. Inverse correlation between Phe versus L-car and nitrate plus nitrite versus L-car in PKU patients was also showed. We found increased proinflammatory cytokines levels: interleukin (IL)-1ß, interferons (IFN)-gamma, IL-2, tumor necrosis factor (TNF)-alpha, IL-8 and IL-6 in the patients at late diagnosis compared to controls, and IL-8 in the patients at early diagnosis and treatment compared to controls. Increased IL-2, TNF-alpha, IL-6 levels in the patients at late diagnosis compared to early diagnosis were shown, and reduced IL-6 levels in the treated patients compared to patients at late diagnosis. Moreover, it verified a negative correlation between IFN-gamma and L-car in treated patients. Otherwise, it was observed that there were increased IL-4 levels in the patients at late diagnosis compared to early diagnosis, and reduction in treated patients compared to late diagnosed patients. In urine, there was an increase in 8-isoprostane levels in the patients at diagnosis compared to controls and a decrease in oxidized guanine species in the treated patients compared to the diagnosed patients. Our results demonstrate for the first time in literature that time exposure to high Phe concentrations generates a proinflammatory status, especially in PKU patients with late diagnosis. A pro-oxidant status was verified in not treated PKU patients. Our results demonstrate the importance of early diagnosis and prompt start of treatment, in addition to the importance of L-car supplementation, which can improve cellular defense against inflammation and oxidative damage in PKU patients.


Assuntos
Citocinas , Fenilcetonúrias , Recém-Nascido , Humanos , Fenilalanina , Diagnóstico Tardio , Interleucina-2 , Interleucina-6 , Interleucina-8 , Carnitina/farmacologia , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/urina , Fator de Necrose Tumoral alfa
2.
Int J Dev Neurosci ; 82(8): 772-788, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129623

RESUMO

Urea cycle disorders (UCD) are a group of genetic diseases caused by deficiencies in the enzymes and transporters involved in the urea cycle. The impairment of the cycle results in ammonia accumulation, leading to neurological dysfunctions and poor outcomes to affected patients. The aim of this study is to investigate and describe UCD patients' principal clinical and biochemical presentations to support professionals on urgent diagnosis and quick management, aiming better outcomes for patients. We explored medical records of 30 patients diagnosed in a referral center from Brazil to delineate UCD clinical and biochemical profile. Patients demonstrated a range of signs and symptoms, such as altered levels of consciousness, acute encephalopathy, seizures, progressive loss of appetite, vomiting, coma, and respiratory distress, in most cases combined with high levels of ammonia, which is an immediate biomarker, leading to a UCD suspicion. The most prevalent UCD detected were ornithine transcarbamylase deficiency, followed by citrullinemia type 1, hyperargininemia, carbamoyl phosphate synthase 1 deficiency, and argininosuccinic aciduria. Clinical symptoms were highly severe, being the majority developmental and neurological disabilities, with 20% of death rate. Laboratory analysis revealed high levels of ammonia (mean ± SD: 860 ± 470 µmol/L; reference value: ≤80 µmol/L), hypoglycemia, metabolic acidosis, and high excretion of orotic acid in the urine (except in carbamoyl phosphate synthetase 1 [CPS1] deficiency). We emphasize the need of urgent identification of UCD clinical and biochemical conditions, and immediate measurement of ammonia, to enable the correct diagnosis and increase the chances of patients' survival, minimizing neurological and psychomotor damage caused by hepatic encephalopathy.


Assuntos
Encefalopatia Hepática , Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Distúrbios Congênitos do Ciclo da Ureia , Humanos , Hiperamonemia/complicações , Hiperamonemia/diagnóstico , Hiperamonemia/genética , Encefalopatia Hepática/complicações , Encefalopatia Hepática/diagnóstico , Amônia , Distúrbios Congênitos do Ciclo da Ureia/complicações , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Distúrbios Congênitos do Ciclo da Ureia/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/complicações , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Doença da Deficiência de Ornitina Carbomoiltransferase/genética
3.
Metab Brain Dis ; 36(7): 1957-1968, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216350

RESUMO

Although phenylalanine (Phe) is known to be neurotoxic in phenylketonuria (PKU), its exact pathogenetic mechanisms of brain damage are still poorly known. Furthermore, much less is known about the role of the Phe derivatives phenylacetic (PAA), phenyllactic (PLA) and phenylpyruvic (PPA) acids that also accumulate in this this disorder on PKU neuropathology. Previous in vitro and in vivo studies have shown that Phe elicits oxidative stress in brain of rodents and that this deleterious process also occurs in peripheral tissues of phenylketonuric patients. In the present study, we investigated whether Phe and its derivatives PAA, PLA and PPA separately or in combination could induce reactive oxygen species (ROS) formation and provoke DNA damage in C6 glial cells. We also tested the role of L-carnitine (L-car), which has been recently considered an antioxidant agent and easily cross the blood brain barrier on the alterations of C6 redox status provoked by Phe and its metabolites. We first observed that cell viability was not changed by Phe and its metabolites. Furthermore, Phe, PAA, PLA and PPA, at concentrations found in plasma of PKU patients, provoked marked DNA damage in the glial cells separately and when combined. Of note, these effects were totally prevented (Phe, PAA and PPA) or attenuated (PLA) by L-car pre-treatment. In addition, a potent ROS formation also induced by Phe and PAA, whereas only moderate increases of ROS were caused by PPA and PLA. Pre-treatment with L-car also prevented Phe- and PAA-induced ROS generation, but not that provoked by PLA and PPA. Thus, our data show that Phe and its major metabolites accumulated in PKU provoke extensive DNA damage in glial cells probably by ROS formation and that L-car may potentially represent an adjuvant therapeutic agent in PKU treatment.


Assuntos
Lesões Encefálicas , Fenilcetonúrias , Lesões Encefálicas/tratamento farmacológico , Carnitina/farmacologia , Carnitina/uso terapêutico , Humanos , Cetoácidos/farmacologia , Estresse Oxidativo , Fenilalanina/farmacologia , Fenilalanina/uso terapêutico
4.
Metab Brain Dis ; 36(5): 1015-1027, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620579

RESUMO

Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Córtex Cerebral/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/metabolismo , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/administração & dosagem , Animais , Catalase/metabolismo , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/induzido quimicamente , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
5.
Metab Brain Dis ; 36(2): 205-212, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064266

RESUMO

Glutaric aciduria type 1 (GA-1) is a rare but treatable inherited disease caused by deficiency of glutaryl-CoA dehydrogenase activity due to GCDH gene mutations. In this study, we report 24 symptomatic GA-1 Brazilian patients, and present their clinical, biochemical, and molecular findings. Patients were diagnosed by high levels of glutaric and/or 3-hydroxyglutaric and glutarylcarnitine. Diagnosis was confirmed by genetic analysis. Most patients had the early-onset severe form of the disease and the main features were neurological deterioration, seizures and dystonia, usually following an episode of metabolic decompensation. Despite the early symptomatology, diagnosis took a long time for most patients. We identified 13 variants in the GCDH gene, four of them were novel: c.91 + 5G > A, c.167T > G, c.257C > T, and c.10A > T. The most common mutation was c.1204C > T (p.R402W). Surprisingly, the second most frequent mutation was the new mutation c.91 + 5G > A (IVS1 ds G-A + 5). Our results allowed a complete characterization of the GA-1 Brazilian patients. Besides, they expand the mutational spectrum of GA-1, with the description of four new mutations. This work reinforces the importance of awareness of GA-1 among doctors in order to allow early diagnosis and treatment in countries like Brazil where the disease has not been included in newborn screening programs.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Mutação , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Brasil , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
6.
Arch Biochem Biophys ; 679: 108206, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31760122

RESUMO

BACKGROUND: The mitochondrial fatty acids oxidation disorders (FAOD) are inherited metabolic disorders (IMD) characterized by the accumulation of fatty acids of different sizes of chain according to the affected enzyme. METHODS: This study evaluated the lipid peroxidation by the measurement of 8-isoprostanes, nitrosative stress parameters by the measurement of nitrite and nitrate content and DNA and RNA oxidative damage by the measurement of oxidized guanine species in urine samples from long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), medium-chain acyl-CoA dehydrogenase deficiency (MCADD) and multiple acyl-CoA dehydrogenase deficiency (MADD) patients. Also, we analyzed the in vitro DNA damage by comet assay induced by adipic acid, suberic acid, hexanoylglycine and suberylglycine, separated and in combination, as well as the effect of l-carnitine in human leukocytes. RESULTS: An increase on 8-isoprostanes levels in all groups of patients was observed. The nitrite and nitrate levels were increased in LCHADD patients. DNA and RNA damage evaluation revealed increase on oxidized guanine species levels in LCHADD and MADD patients. The in vitro evaluation revealed an increase on the DNA damage induced by all metabolites, besides a potencialyzed effect. l-carnitine decreased the DNA damage induced by the metabolites. CONCLUSION: These results demonstrate that toxic metabolites accumulated could be related to the increased oxidative and nitrosative stress of FAOD patients and that the metabolites, separated and in combination, cause DNA damage, which was reduced by l-carnitine, demonstrating antioxidant protection. GENERAL SIGNIFICANCE: This work demonstrated oxidative stress in FAOD patients and the genotoxic potential of MCADD metabolites and the protective effect of l-carnitine.


Assuntos
Carnitina/farmacologia , Dano ao DNA , Ácidos Graxos/metabolismo , Doenças Mitocondriais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Feminino , Humanos , Masculino , Doenças Mitocondriais/genética , Oxirredução/efeitos dos fármacos
7.
Arch Biochem Biophys ; 668: 16-22, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31047871

RESUMO

3-hydroxy-3-methylglutaric aciduria (HMGA) is an inherited disorder of the leucine catabolic pathway in which occurs a deficiency of the 3-hydroxy-3-methylglutaryl-CoA lyase enzyme. Therefore, the organic acids 3-hydroxy-3-methylglutaric (HMG) and 3-methylglutaric (MGA), mainly, accumulate in tissues of affected patients. Lately, much attention has been focused on free radicals as mediators of tissue damage in human diseases, causing lipid peroxidation, protein oxidation and DNA damage. The treatment of this disease is based in a restricted protein ingest and supplementation with l-carnitine (LC), an antioxidant and detoxifying agent. In the present work, we investigated the in vitro oxidative damage to DNA induced by the accumulation of organic acids and oxidative stress parameters in vivo of patients with 3-HMG, as well as the effect of the recommended therapy. The in vitro DNA damage was analyzed by the alkaline comet assay in leukocytes incubated with HMG and MGA (1 mM, 2.5 mM and 5 mM) and co-incubated with LC (90 µM and 150 µM). The in vivo urinary 15-F2t-isoprostane levels and urinary oxidized guanine species were measured by ELISA kits in patient's urine before and after the treatment with LC. HMG and MGA induced a DNA damage index (DI) significantly higher than that of the control group. The DI was significantly reduced in the presence of LC. It was also verified a significant increase of oxidized guanine species and urinary isoprostane levels, biomarker of oxidative DNA damage and lipid peroxidation respectively, in patients before treatment. After the treatment and supplementation with LC, patients presented significantly lower levels of those biomarkers. Analyzing the data together, we can conclude that HMGA patients present oxidative lipid and DNA damage, which is induced by HMG and MGA, and the antioxidant therapy with LC can prevent that kind of injuries.


Assuntos
Acetil-CoA C-Acetiltransferase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Carnitina/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Meglutol/análogos & derivados , Meglutol/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/urina , Acetil-CoA C-Acetiltransferase/metabolismo , Acetil-CoA C-Acetiltransferase/urina , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/urina , Criança , Pré-Escolar , Dinoprosta/análogos & derivados , Dinoprosta/urina , Guanina/análogos & derivados , Guanina/urina , Guanosina/análogos & derivados , Guanosina/urina , Humanos , Lactente , Peroxidação de Lipídeos/efeitos dos fármacos
8.
Arch Med Res ; 49(3): 205-212, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-30119976

RESUMO

BACKGROUND: Inborn errors of metabolism (IEM) are diseases which can lead to accumulation of toxic metabolites in the organism. AIM OF THE STUDY: To investigate, by selective screening, mitochondrial fatty acid oxidation defects (FAOD) and organic acidemias in Brazilian individuals with clinical suspicion of IEM. METHODS: A total of 7,268 individuals, from different regions of Brazil, had whole blood samples impregnated on filter paper which were submitted to the acylcarnitines analysis by liquid chromatography/tandem mass spectrometry (LC/MS/MS) at the Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Brazil, during July 2008-July 2016. RESULTS: Our results showed that 68 patients (0.93%) were diagnosed with FAOD (19 cases) and organic acidemias (49 cases). The most prevalent FAOD was multiple acyl CoA dehydrogenase deficiency (MADD), whereas glutaric type I and 3-OH-3-methylglutaric acidemias were the most frequent disorders of organic acid metabolism. Neurologic symptoms and metabolic acidosis were the most common clinical and laboratory features, whereas the average age of the patients at diagnosis was 2.3 years. CONCLUSIONS: Results demonstrated a high incidence of glutaric acidemia type I and 3-OH-3- methylglutaric acidemia in Brazil and an unexpectedly low incidence of FAOD, particularly medium-chain acyl-CoA dehydrogenase deficiency (MCADD).


Assuntos
Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Carnitina/análogos & derivados , Ácidos Graxos/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo Lipídico/diagnóstico , Acil-CoA Desidrogenase/sangue , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Encefalopatias Metabólicas/sangue , Brasil , Carnitina/análise , Pré-Escolar , Cromatografia Líquida , Feminino , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/sangue , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/sangue , Masculino , Programas de Rastreamento , Oxirredução , Prevalência , Espectrometria de Massas em Tandem , Adulto Jovem
9.
J Cell Biochem ; 119(12): 10021-10032, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30129250

RESUMO

The deficiency of the enzyme glutaryl-CoA dehydrogenase, known as glutaric acidemia type I (GA-I), leads to the accumulation of glutaric acid (GA) and glutarilcarnitine (C5DC) in the tissues and body fluids, unleashing important neurotoxic effects. l-carnitine (l-car) is recommended for the treatment of GA-I, aiming to induce the excretion of toxic metabolites. l-car has also demonstrated an important role as antioxidant and anti-inflammatory in some neurometabolic diseases. This study evaluated GA-I patients at diagnosis moment and treated the oxidative damage to lipids, proteins, and the inflammatory profile, as well as in vivo and in vitro DNA damage, reactive nitrogen species (RNS), and antioxidant capacity, verifying if the actual treatment with l-car (100 mg kg-1 day-1 ) is able to protect the organism against these processes. Significant increases of GA and C5DC were observed in GA-I patients. A deficiency of carnitine in patients before the supplementation was found. GA-I patients presented significantly increased levels of isoprostanes, di-tyrosine, urinary oxidized guanine species, and the RNS, as well as a reduced antioxidant capacity. The l-car supplementation induced beneficial effects reducing these biomarkers levels and increasing the antioxidant capacity. GA, in three different concentrations, significantly induced DNA damage in vitro, and the l-car was able to prevent this damage. Significant increases of pro-inflammatory cytokines IL-6, IL-8, GM-CSF, and TNF-α were shown in patients. Thus, the beneficial effects of l-car presented in the treatment of GA-I are due not only by increasing the excretion of accumulated toxic metabolites, but also by preventing oxidative damage.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas/metabolismo , Carnitina/farmacologia , Dano ao DNA , Glutaril-CoA Desidrogenase/deficiência , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carnitina/uso terapêutico , Criança , Pré-Escolar , Feminino , Glutaril-CoA Desidrogenase/efeitos dos fármacos , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Lactente , Masculino , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Espécies Reativas de Nitrogênio
10.
J Cell Biochem ; 119(1): 1223-1233, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28722826

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited disease characterized by progressive inflammatory demyelization in the brain, adrenal insufficiency, and an abnormal accumulation of very long chain fatty acids (VLCFA) in tissue and body fluids. Considering that inflammation might be involved in pathophysiology of X-ALD, we aimed to investigate pro- and anti-inflammatory cytokines in plasma from three different male phenotypes (CCER, AMN, and asymptomatic individuals). Our results showed that asymptomatic patients presented increased levels of pro-inflammatory cytokines IL-1ß, IL-2, IL-8, and TNF-α and the last one was also higher in AMN phenotype. Besides, asymptomatic patients presented higher levels of anti-inflammatory cytokines IL-4 and IL-10. AMN patients presented higher levels of IL-2, IL-5, and IL-4. We might hypothesize that inflammation in X-ALD is related to plasmatic VLCFA concentration, since there were positive correlations between C26:0 plasmatic levels and pro-inflammatory cytokines in asymptomatic and AMN patients and negative correlation between anti-inflammatory cytokine and C24:0/C22:0 ratio in AMN patients. The present work yields experimental evidence that there is an inflammatory imbalance associated Th1, (IL-2, IL-6, and IFN-γ), Th2 (IL-4 and IL-10), and macrophages response (TNF-α and IL-1ß) in the periphery of asymptomatic and AMN patients, and there is correlation between VLCFA plasmatic levels and inflammatory mediators in X-ALD. Furthermore, we might also speculate that the increase of plasmatic cytokines in asymptomatic patients could be considered an early biomarker of brain damage and maybe also a predictor of disease progression.


Assuntos
Adrenoleucodistrofia/imunologia , Citocinas/sangue , Macrófagos/imunologia , Células Th1/imunologia , Adolescente , Adrenoleucodistrofia/sangue , Adulto , Criança , Pré-Escolar , Ácidos Graxos/sangue , Humanos , Lactente , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-2/sangue , Interleucina-4/sangue , Interleucina-5/sangue , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
11.
Toxicol In Vitro ; 42: 47-53, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28396261

RESUMO

d-2-hydroxyglutaric (D-2-HGA) and l-2-hydroxyglutaric (L-2-HGA) acidurias are rare neurometabolic disorders biochemically characterized by increased levels of d-2-hydroxyglutaric acid (D-2-HG) and l-2-hydroxyglutaric acid (L-2-HG) respectively, in biological fluids and tissues. These diseases are caused by mutations in the specific enzymes involved in the metabolic pathways of these organic acids. In the present work, we first investigated whether D-2-HG and L-2-HGA could provoke DNA oxidative damage in blood leukocytes and whether l-carnitine (LC) could prevent the in vitro DNA damage induced by these organic acids. It was verified that 50µM of D-2-HG and 30µM of L-2-HG significantly induced DNA damage that was prevented by 30 and 150µM of LC. We also evaluated oxidative stress parameters in urine of L-2-HGA patients and observed a significant increase of oxidized guanine species and di-tyrosine, biomarkers of oxidative DNA and protein damage, respectively. In contrast, no significant changes of urinary isoprostanes and reactive nitrogen species levels were observed in these patients. Taken together, our data indicate the involvement of oxidative damage, especially on DNA, in patients affected by these diseases and the protective effect of LC.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Carnitina/farmacologia , Dano ao DNA/efeitos dos fármacos , Glutaratos/toxicidade , Substâncias Protetoras/farmacologia , Adolescente , Adulto , Encefalopatias Metabólicas Congênitas/urina , Criança , Pré-Escolar , Ensaio Cometa , Dinoprosta/análogos & derivados , Dinoprosta/urina , Guanina/análogos & derivados , Guanina/urina , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/urina , Tirosina/análogos & derivados , Tirosina/urina , Adulto Jovem
12.
Mutat Res ; 775: 43-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25867118

RESUMO

Maple syrup urine disease (MSUD) is an inherited disorder caused by severe deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their α-ketoacid derivatives. MSUD patients generally present ketoacidosis, poor feeding, ataxia, coma, psychomotor delay, mental retardation and brain abnormalites. Treatment consists of dietary restriction of the BCAA (low protein intake) supplemented by a BCAA-free amino acid mixture. Although the mechanisms of brain damage in MSUD are poorly known, previous studies have shown that oxidative stress may be involved in the neuropathology of this disorder. In this regard, it was recently reported that MSUD patients have deficiency of l-carnitine (l-car), a compound with antioxidant properties that is used as adjuvant therapy in various inborn errors of metabolism. In this work, we investigated DNA damage determined by the alkaline comet assay in peripheral whole blood leukocytes of MSUD patients submitted to a BCAA-restricted diet supplemented or not with l-car. We observed a significant increase of DNA damage index (DI) in leukocytes from MSUD patients under BCAA-restricted diet as compared to controls and that l-car supplementation significantly decreased DNA DI levels. It was also found a positive correlation between DI and MDA content, a marker of lipid peroxidation, and an inverse correlation between DI and l-car levels. Taken together, our present results suggest a role for reactive species and the involvement of oxidative stress in DNA damage in this disorder. Since l-car reduced DNA damage, it is presumed that dietary supplementation of this compound may serve as an adjuvant therapeutic strategy for MSUD patients in addition to other therapies.


Assuntos
Carnitina/administração & dosagem , Dano ao DNA , Leucócitos/metabolismo , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Doença da Urina de Xarope de Bordo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Complexo Vitamínico B/administração & dosagem , Criança , Pré-Escolar , Feminino , Humanos , Leucócitos/patologia , Masculino , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/patologia
13.
Mol Cell Biochem ; 402(1-2): 149-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25557019

RESUMO

3-hydroxy-3-methylglutaric aciduria (HMGA; OMIM 246450) is a rare autosomal recessive disorder, caused by the deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (4.1.3.4), which results in the accumulation of 3-hydroxy-3-methylglutaric (HMG) and 3-methylglutaric (MGA) acids in tissues and biological fluids of affected individuals. Recent in vivo and in vitro animal studies have demonstrated that the accumulation of these metabolites can disturb the cellular redox homeostasis, which can contribute to the neurological manifestations presented by the patients. So, in the present work, we investigated oxidative stress parameters in plasma and urine samples from HMGA patients, obtained at the moment of diagnosis of this disorder and during therapy with low-protein diet and L-carnitine supplementation. It was verified that untreated HMGA patients presented higher levels of urinary di-tyrosine and plasma thiobarbituric acid-reactive substances (TBA-RS), which are markers of protein and lipid oxidative damage, respectively, as well as a reduction of the urinary antioxidant capacity. Treated HMGA patients also presented an increased protein oxidative damage, as demonstrated by their higher concentrations of plasma protein carbonyl groups and urinary di-tyrosine, as well as by the reduction of total sulfhydryl groups in plasma, in relation to controls. On the other hand, HMGA patients under therapy presented normal levels of TBA-RS and urinary antioxidant capacity, which can be related, at least in part, to the antioxidant and antiperoxidative effects exerted by L-carnitine. The results of this work are the first report showing that a redox imbalance occurs in patients with HMGA what reinforces the importance of the antioxidant therapy in this disorder.


Assuntos
Acetil-CoA C-Acetiltransferase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/urina , Meglutol/urina , Estresse Oxidativo , Acetil-CoA C-Acetiltransferase/urina , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Humanos , Lactente , Carbonilação Proteica
14.
Metab Brain Dis ; 25(2): 145-54, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20431931

RESUMO

5-Oxoproline accumulates in glutathione synthetase deficiency, an autossomic recessive inherited disorder clinically characterized by hemolytic anemia, metabolic acidosis, and severe neurological symptoms whose mechanisms are poorly known. In the present study we investigated the effects of acute subcutaneous administration of 5-oxoproline to verify whether oxidative stress is elicited by this metabolite in vivo in cerebral cortex and cerebellum of 14-day-old rats. Our results showed that the acute administration of 5-oxoproline is able to promote both lipid and protein oxidation, to impair brain antioxidant defenses, to alter SH/SS ratio and to enhance hydrogen peroxide content, thus promoting oxidative stress in vivo, a mechanism that may be involved in the neuropathology of gluthatione synthetase deficiency.


Assuntos
Antioxidantes/metabolismo , Encefalopatias Metabólicas Congênitas/induzido quimicamente , Cerebelo/efeitos dos fármacos , Cérebro/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Pirrolidonocarboxílico/toxicidade , Fatores Etários , Animais , Antioxidantes/fisiologia , Encefalopatias Metabólicas Congênitas/metabolismo , Cerebelo/metabolismo , Cérebro/metabolismo , Modelos Animais de Doenças , Glutationa Sintase/deficiência , Peroxidação de Lipídeos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Estresse Oxidativo/fisiologia , Ácido Pirrolidonocarboxílico/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA