Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicology ; 504: 153793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574843

RESUMO

Photodynamic therapy (PDT) utilizes the potential of photosensitizing substances to absorb light energy and produce reactive oxygen species. Tetra-cationic porphyrins, which have organic or coordination compounds attached to their periphery, are heterocyclic derivatives with well-described antimicrobial and antitumoral properties. This is due to their ability to produce reactive oxygen species and their photobiological properties in solution. Consequently, these molecules are promising candidates as new and more effective photosensitizers with biomedical, environmental, and other biomedical applications. Prior to human exposure, it is essential to establish the toxicological profile of these molecules using in vivo models. In this study, we used Caenorhabditis elegans, a small free-living nematode, as a model for assessing toxic effects and predicting toxicity in preclinical research. We evaluated the toxic effects of porphyrins (neutral and tetra-cationic) on nematodes under dark/light conditions. Our findings demonstrate that tetra-methylated porphyrins (3TMeP and 4TMeP) at a concentration of 3.3 µg/mL (1.36 and 0.93 µM) exhibit high toxicity (as evidenced by reduced survival, development, and locomotion) under dark conditions. Moreover, photoactivated tetra-methylated porphyrins induce higher ROS levels compared to neutral (3TPyP and 4TPyP), tetra-palladated (3PdTPyP and 4PdTPyP), and tetra-platinated (3PtTPyP and 4PtTPyP) porphyrins, which may be responsible for the observed toxic effects.


Assuntos
Caenorhabditis elegans , Luz , Fármacos Fotossensibilizantes , Porfirinas , Animais , Caenorhabditis elegans/efeitos dos fármacos , Porfirinas/toxicidade , Porfirinas/química , Fármacos Fotossensibilizantes/toxicidade , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Cátions/toxicidade , Relação Dose-Resposta a Droga
2.
Neurotoxicology ; 97: 120-132, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37302585

RESUMO

Copper (Cu) and Zinc (Zn) are required in small concentrations for metabolic functions, but are also toxic. There is a great concern about soil pollution by heavy metals, which may exposure the population to these toxicants, either by inhalation of dust or exposure to toxicants through ingestion of food derived from contaminated soils. In addition, the toxicity of metals in combination is questionable, as soil quality guidelines only assess them separately. It is well known that metal accumulation is often found in the pathologically affected regions of many neurodegenerative diseases, including Huntington's disease (HD). HD is caused by an autosomal dominantly inherited CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. This results in the formation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD results in loss of neuronal cells, motor changes, and dementia. Rutin is a flavonoid found in various food sources, and previous studies indicate it has protective effects in HD models and acts as a metal chelator. However, further studies are needed to unravel its effects on metal dyshomeostasis and to discern the underlying mechanisms. In the present study, we investigated the toxic effects of long-term exposure to copper, zinc, and their mixture, and the relationship with the progression of neurotoxicity and neurodegeneration in a C. elegans-based HD model. Furthermore, we investigated the effects of rutin post metal exposure. Overall, we demonstrate that chronic exposure to the metals and their mixture altered body parameters, locomotion, and developmental delay, in addition to increasing polyQ protein aggregates in muscles and neurons causing neurodegeneration. We also propose that rutin has protective effects acting through mechanisms involving antioxidant and chelating properties. Altogether, our data provides new indications about the higher toxicity of metals in combination, the chelating potential of rutin in the C. elegans model of HD and possible strategies for future treatments of neurodegenerative diseases caused by the aggregation of proteins related to metals.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Humanos , Doença de Huntington/induzido quimicamente , Doença de Huntington/prevenção & controle , Doença de Huntington/genética , Caenorhabditis elegans , Cobre/toxicidade , Zinco , Rutina/farmacologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA