Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
FEBS Lett ; 598(8): 839-863, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453162

RESUMO

Cyclic nucleotides are the most diversified category of second messengers and are found in all organisms modulating diverse pathways. While cAMP and cGMP have been studied over 50 years, cyclic di-nucleotide signaling in eukaryotes emerged only recently with the anti-viral molecule 2´3´cGAMP. Recent breakthrough discoveries have revealed not only the astonishing chemical diversity of cyclic nucleotides but also surprisingly deep-rooted evolutionary origins of cyclic oligo-nucleotide signaling pathways and structural conservation of the proteins involved in their synthesis and signaling. Here we discuss how enzyme-centered approaches have paved the way for the identification of several cyclic nucleotide signals, focusing on the advantages and challenges associated with deciphering the activation mechanisms of such enzymes.


Assuntos
Nucleotídeos Cíclicos , Nucleotídeos Cíclicos/metabolismo , Humanos , Animais , Transdução de Sinais , GMP Cíclico/metabolismo , AMP Cíclico/metabolismo
2.
Sci Immunol ; 9(92): eadi9769, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207055

RESUMO

UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Camundongos , Animais , Humanos , Receptor 7 Toll-Like/genética , Autoimunidade/genética , Receptor Toll-Like 9/metabolismo , Receptor 8 Toll-Like , Receptor 3 Toll-Like/metabolismo , Lúpus Eritematoso Sistêmico/genética , Proteínas de Membrana Transportadoras
3.
Nat Commun ; 14(1): 6770, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914730

RESUMO

Type I interferon (IFN) signalling is tightly controlled. Upon recognition of DNA by cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) translocates along the endoplasmic reticulum (ER)-Golgi axis to induce IFN signalling. Termination is achieved through autophagic degradation or recycling of STING by retrograde Golgi-to-ER transport. Here, we identify the GTPase ADP-ribosylation factor 1 (ARF1) as a crucial negative regulator of cGAS-STING signalling. Heterozygous ARF1 missense mutations cause a previously unrecognized type I interferonopathy associated with enhanced IFN-stimulated gene expression. Disease-associated, GTPase-defective ARF1 increases cGAS-STING dependent type I IFN signalling in cell lines and primary patient cells. Mechanistically, mutated ARF1 perturbs mitochondrial morphology, causing cGAS activation by aberrant mitochondrial DNA release, and leads to accumulation of active STING at the Golgi/ERGIC due to defective retrograde transport. Our data show an unexpected dual role of ARF1 in maintaining cGAS-STING homeostasis, through promotion of mitochondrial integrity and STING recycling.


Assuntos
Interferon Tipo I , Humanos , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
4.
Cell ; 186(15): 3261-3276.e20, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379839

RESUMO

Cyclic GMP-AMP synthase (cGAS) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates STING-dependent downstream immunity. Here, we discover that cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in innate immunity. Building on recent analysis in Drosophila, we identify >3,000 cGLRs present in nearly all metazoan phyla. A forward biochemical screening of 150 animal cGLRs reveals a conserved mechanism of signaling including response to dsDNA and dsRNA ligands and synthesis of isomers of the nucleotide signals cGAMP, c-UMP-AMP, and c-di-AMP. Combining structural biology and in vivo analysis in coral and oyster animals, we explain how synthesis of distinct nucleotide signals enables cells to control discrete cGLR-STING signaling pathways. Our results reveal cGLRs as a widespread family of pattern recognition receptors and establish molecular rules that govern nucleotide signaling in animal immunity.


Assuntos
Imunidade Inata , Nucleotidiltransferases , Humanos , Animais , Nucleotidiltransferases/metabolismo , Imunidade Inata/genética , Transdução de Sinais/genética , DNA/metabolismo , Receptores de Reconhecimento de Padrão
5.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865129

RESUMO

cGAS (cyclic GMP-AMP synthase) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates the protein STING and downstream immunity. Here we discover cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in animal innate immunity. Building on recent analysis in Drosophila , we use a bioinformatic approach to identify >3,000 cGLRs present in nearly all metazoan phyla. A forward biochemical screen of 140 animal cGLRs reveals a conserved mechanism of signaling including response to dsDNA and dsRNA ligands and synthesis of alternative nucleotide signals including isomers of cGAMP and cUMP-AMP. Using structural biology, we explain how synthesis of distinct nucleotide signals enables cells to control discrete cGLR-STING signaling pathways. Together our results reveal cGLRs as a widespread family of pattern recognition receptors and establish molecular rules that govern nucleotide signaling in animal immunity.

7.
J Exp Med ; 219(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35997679

RESUMO

Autoimmune vasculitis is a group of life-threatening diseases, whose underlying pathogenic mechanisms are incompletely understood, hampering development of targeted therapies. Here, we demonstrate that patients suffering from anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) showed increased levels of cGAMP and enhanced IFN-I signature. To identify disease mechanisms and potential therapeutic targets, we developed a mouse model for pulmonary AAV that mimics severe disease in patients. Immunogenic DNA accumulated during disease onset, triggering cGAS/STING/IRF3-dependent IFN-I release that promoted endothelial damage, pulmonary hemorrhages, and lung dysfunction. Macrophage subsets played dichotomic roles in disease. While recruited monocyte-derived macrophages were major disease drivers by producing most IFN-ß, resident alveolar macrophages contributed to tissue homeostasis by clearing red blood cells and limiting infiltration of IFN-ß-producing macrophages. Moreover, pharmacological inhibition of STING, IFNAR-I, or its downstream JAK/STAT signaling reduced disease severity and accelerated recovery. Our study unveils the importance of STING/IFN-I axis in promoting pulmonary AAV progression and identifies cellular and molecular targets to ameliorate disease outcomes.


Assuntos
Interferon Tipo I , Ácidos Nucleicos , Vasculite , Animais , Pulmão , Macrófagos , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases
8.
Immunity ; 55(8): 1329-1331, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947974

RESUMO

FoxP3 is critical for regulatory T cell function and, thus, overall immune homeostasis. In this issue of Immunity, Leng et al. reveal how FoxP3 achieves specific recognition of DNA and functional specialization by adopting a head-to-head domain conformation.


Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , DNA , Fatores de Transcrição Forkhead/genética , Homeostase
9.
Nature ; 609(7927): 590-596, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002575

RESUMO

Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1-3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP-but not unmodified MDP-constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls.


Assuntos
Acetilmuramil-Alanil-Isoglutamina , Proteína Adaptadora de Sinalização NOD2 , Fosfotransferases (Aceptor do Grupo Álcool) , Acetilmuramil-Alanil-Isoglutamina/química , Acetilmuramil-Alanil-Isoglutamina/imunologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , Bactérias/química , Bactérias/imunologia , Parede Celular/química , Hexosaminas/biossíntese , Imunidade Inata , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/química , Peptidoglicano/imunologia , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
10.
EMBO J ; 40(16): e108293, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34250619

RESUMO

cGAS, an innate immune sensor of cellular stress, recognizes double-stranded DNA mislocalized in the cytosol upon infection, mitochondrial stress, DNA damage, or malignancy. Early models suggested that cytosolic localization of cGAS prevents autoreactivity to nuclear and mitochondrial self-DNA, but this paradigm has shifted in light of recent findings of cGAS as a predominantly nuclear protein tightly bound to chromatin. This has raised the question how nuclear cGAS is kept inactive while being surrounded by chromatin, and what function nuclear localization of cGAS may serve in the first place? Cryo-EM structures have revealed that cGAS interacts with nucleosomes, the minimal units of chromatin, mainly via histones H2A/H2B, and that these protein-protein interactions block cGAS from DNA binding and thus prevent autoreactivity. Here, we discuss the biological implications of nuclear cGAS and its interaction with chromatin, including various mechanisms for nuclear cGAS inhibition, release of chromatin-bound cGAS, regulation of different cGAS pools in the cell, and chromatin structure/chromatin protein effects on cGAS activation leading to cGAS-induced autoimmunity.


Assuntos
Nucleotidiltransferases/imunologia , Animais , Autoimunidade , Núcleo Celular/imunologia , Cromatina , Citosol/imunologia , DNA , Humanos
11.
Sci Immunol ; 6(61)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272227

RESUMO

Cytoplasmic double-stranded RNA is sensed by RIG-I-like receptors (RLRs), leading to induction of type I interferons (IFN-Is), proinflammatory cytokines, and apoptosis. Here, we elucidate signaling mechanisms that lead to cytokine secretion and cell death induction upon stimulation with the bona fide RIG-I ligand 5'-triphosphate RNA (3p-RNA) in tumor cells. We show that both outcomes are mediated by dsRNA-receptor families with RLR being essential for cytokine production and IFN-I-mediated priming of effector pathways but not for apoptosis. Affinity purification followed by mass spectrometry and subsequent functional analysis revealed that 3p-RNA bound and activated oligoadenylate synthetase 1 and RNase L. RNase L-deficient cells were profoundly impaired in their ability to undergo apoptosis. Mechanistically, the concerted action of translational arrest triggered by RNase L and up-regulation of NOXA was needed to deplete the antiapoptotic MCL-1 to cause intrinsic apoptosis. Thus, 3p-RNA-induced apoptosis is a two-step process consisting of RIG-I-dependent priming and an RNase L-dependent effector phase.


Assuntos
2',5'-Oligoadenilato Sintetase/imunologia , Endorribonucleases/imunologia , Neoplasias/imunologia , Receptores do Ácido Retinoico/imunologia , 2',5'-Oligoadenilato Sintetase/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteína DEAD-box 58/genética , Endorribonucleases/genética , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Ligantes , Camundongos , Receptores Imunológicos/genética
12.
Eur J Immunol ; 51(8): 1897-1910, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34138462

RESUMO

Nucleic acids (NAs) represent one of the most important classes of molecules recognized by the innate immune system. However, NAs are not limited to pathogens, but are also present within the host. As such, the immune system has evolved an elaborate set of pathogen recognition receptors (PRRs) that employ various strategies to recognize distinct types of NAs, while reliably distinguishing between self and nonself. The here-employed strategies encompass the positioning of NA-sensing PRRs in certain subcellular compartments that potentially come in contact with pathogens but not host NAs, the existence of counterregulatory measures that keep endogenous NAs below a certain threshold, and also the specific identification of certain nonself patterns. Here, we review recent advances in the molecular mechanisms of NA recognition by TLRs, RLRs, and the cGAS-STING axis. We highlight the differences in NA-PRR interfaces that confer specificity and selectivity toward an NA ligand, as well as the NA-dependent induced conformational changes required for signal transduction.


Assuntos
Imunidade Inata/imunologia , Ácidos Nucleicos/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Tolerância a Antígenos Próprios/imunologia , Animais , Humanos
13.
Nature ; 587(7835): 678-682, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911480

RESUMO

Cyclic GMP-AMP synthase (cGAS) is an innate immune sensor for cytosolic microbial DNA1. After binding DNA, cGAS synthesizes the messenger 2'3'-cyclic GMP-AMP (cGAMP)2-4, which triggers cell-autonomous defence and the production of type I interferons and pro-inflammatory cytokines via the activation of STING5. In addition to responding to cytosolic microbial DNA, cGAS also recognizes mislocalized cytosolic self-DNA and has been implicated in autoimmunity and sterile inflammation6,7. Specificity towards pathogen- or damage-associated DNA was thought to be caused by cytosolic confinement. However, recent findings place cGAS robustly in the nucleus8-10, where tight tethering of chromatin is important to prevent autoreactivity to self-DNA8. Here we show how cGAS is sequestered and inhibited by chromatin. We provide a cryo-electron microscopy structure of the cGAS catalytic domain bound to a nucleosome, which shows that cGAS does not interact with the nucleosomal DNA, but instead interacts with histone 2A-histone 2B, and is tightly anchored to the 'acidic patch'. The interaction buries the cGAS DNA-binding site B, and blocks the formation of active cGAS dimers. The acidic patch robustly outcompetes agonistic DNA for binding to cGAS, which suggests that nucleosome sequestration can efficiently inhibit cGAS, even when accessible DNA is nearby, such as in actively transcribed genomic regions. Our results show how nuclear cGAS is sequestered by chromatin and provides a mechanism for preventing autoreactivity to nuclear self-DNA.


Assuntos
Domínio Catalítico , Cromatina/química , Cromatina/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Sequência de Aminoácidos , Animais , Autoantígenos/química , Autoantígenos/imunologia , Autoantígenos/metabolismo , Autoantígenos/ultraestrutura , Sítios de Ligação , Ligação Competitiva , Cromatina/genética , Cromatina/ultraestrutura , Microscopia Crioeletrônica , DNA/química , DNA/imunologia , DNA/metabolismo , DNA/ultraestrutura , Ativação Enzimática , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunidade Inata , Camundongos , Modelos Moleculares , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/ultraestrutura , Multimerização Proteica , Células THP-1
14.
Cell Rep ; 27(4): 1165-1175.e5, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018131

RESUMO

Stimulator of interferon genes (STING) is a key regulator of type I interferon and pro-inflammatory responses during infection, cellular stress, and cancer. Here, we reveal a mechanism for how STING balances activation of IRF3- and NF-κB-dependent transcription and discover that acquisition of discrete signaling modules in the vertebrate STING C-terminal tail (CTT) shapes downstream immunity. As a defining example, we identify a motif appended to the CTT of zebrafish STING that inverts the typical vertebrate signaling response and results in dramatic NF-κB activation and weak IRF3-interferon signaling. We determine a co-crystal structure that explains how this CTT sequence recruits TRAF6 as a new binding partner and demonstrate that the minimal motif is sufficient to reprogram human STING and immune activation in macrophage cells. Together, our results define the STING CTT as a linear signaling hub that can acquire modular motifs to readily adapt downstream immunity.


Assuntos
Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Macrófagos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Conformação Proteica , Especificidade da Espécie , Fator 6 Associado a Receptor de TNF/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
Nature ; 567(7747): 194-199, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787435

RESUMO

Cyclic dinucleotides (CDNs) have central roles in bacterial homeostasis and virulence by acting as nucleotide second messengers. Bacterial CDNs also elicit immune responses during infection when they are detected by pattern-recognition receptors in animal cells. Here we perform a systematic biochemical screen for bacterial signalling nucleotides and discover a large family of cGAS/DncV-like nucleotidyltransferases (CD-NTases) that use both purine and pyrimidine nucleotides to synthesize a diverse range of CDNs. A series of crystal structures establish CD-NTases as a structurally conserved family and reveal key contacts in the enzyme active-site lid that direct purine or pyrimidine selection. CD-NTase products are not restricted to CDNs and also include an unexpected class of cyclic trinucleotide compounds. Biochemical and cellular analyses of CD-NTase signalling nucleotides demonstrate that these cyclic di- and trinucleotides activate distinct host receptors and thus may modulate the interaction of both pathogens and commensal microbiota with their animal and plant hosts.


Assuntos
Proteínas de Bactérias/metabolismo , Nucleotídeos/biossíntese , Nucleotídeos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Animais , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/biossíntese , Fosfatos de Dinucleosídeos/metabolismo , Células HEK293 , Humanos , Camundongos , Nucleotídeos/química , Nucleotidiltransferases/genética , Óperon/genética , Simbiose
16.
Cell ; 174(2): 300-311.e11, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007416

RESUMO

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.


Assuntos
DNA/metabolismo , Vigilância Imunológica/fisiologia , Nucleotidiltransferases/metabolismo , Animais , Benzofuranos/química , Benzofuranos/metabolismo , Sítios de Ligação , Domínio Catalítico , Quimiotaxia/efeitos dos fármacos , DNA/química , Humanos , Camundongos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade da Espécie , Vibrio cholerae/metabolismo , Vibrio cholerae/fisiologia
17.
Nature ; 549(7672): 394-398, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28902841

RESUMO

Cytosolic DNA arising from intracellular pathogens triggers a powerful innate immune response. It is sensed by cyclic GMP-AMP synthase (cGAS), which elicits the production of type I interferons by generating the second messenger 2'3'-cyclic-GMP-AMP (cGAMP). Endogenous nuclear or mitochondrial DNA can also be sensed by cGAS under certain conditions, resulting in sterile inflammation. The cGAS dimer binds two DNA ligands shorter than 20 base pairs side-by-side, but 20-base-pair DNA fails to activate cGAS in vivo and is a poor activator in vitro. Here we show that cGAS is activated in a strongly DNA length-dependent manner both in vitro and in human cells. We also show that cGAS dimers form ladder-like networks with DNA, leading to cooperative sensing of DNA length: assembly of the pioneering cGAS dimer between two DNA molecules is ineffective; but, once formed, it prearranges the flanking DNA to promote binding of subsequent cGAS dimers. Remarkably, bacterial and mitochondrial nucleoid proteins HU and mitochondrial transcription factor A (TFAM), as well as high-mobility group box 1 protein (HMGB1), can strongly stimulate long DNA sensing by cGAS. U-turns and bends in DNA induced by these proteins pre-structure DNA to nucleate cGAS dimers. Our results suggest a nucleation-cooperativity-based mechanism for sensitive detection of mitochondrial DNA and pathogen genomes, and identify HMGB/TFAM proteins as DNA-structuring host factors. They provide an explanation for the peculiar cGAS dimer structure and suggest that cGAS preferentially binds incomplete nucleoid-like structures or bent DNA.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Proteínas HMGB/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Mitocondriais/metabolismo , Nucleotidiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/química , Multimerização Proteica
18.
Trends Cell Biol ; 27(10): 697-698, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28882413

RESUMO

DNA damage elicits a potent proinflammatory immune response. A collection of four papers now reveals that micronuclear DNA is a new cell intrinsic immunostimulatory molecule, and that accumulation of the immune sensor cyclic GMP-AMP synthase (cGAS) in micronuclei leads to a cell-cycle-dependent proinflammatory response following DNA damage.


Assuntos
Núcleo Celular/genética , DNA/genética , Imunidade Inata/genética , Nucleotídeos Cíclicos/genética , Animais , Ciclo Celular/genética , Citoplasma/genética , Dano ao DNA/genética , Humanos , Inflamação , Transdução de Sinais/genética
19.
ACS Nano ; 10(10): 9156-9164, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27583560

RESUMO

One key goal of DNA nanotechnology is the bottom-up construction of macroscopic crystalline materials. Beyond applications in fields such as photonics or plasmonics, DNA-based crystal matrices could possibly facilitate the diffraction-based structural analysis of guest molecules. Seeman and co-workers reported in 2009 the first designed crystal matrices based on a 38 kDa DNA triangle that was composed of seven chains. The crystal lattice was stabilized, unprecedentedly, by Watson-Crick base pairing. However, 3D crystallization of larger designed DNA objects that include more chains such as DNA origami remains an unsolved problem. Larger objects would offer more degrees of freedom and design options with respect to tailoring lattice geometry and for positioning other objects within a crystal lattice. The greater rigidity of multilayer DNA origami could also positively influence the diffractive properties of crystals composed of such particles. Here, we rationally explore the role of heterogeneity and Watson-Crick interaction strengths in crystal growth using 40 variants of the original DNA triangle as model multichain objects. Crystal growth of the triangle was remarkably robust despite massive chemical, geometrical, and thermodynamical sample heterogeneity that we introduced, but the crystal growth sensitively depended on the sequences of base pairs next to the Watson-Crick sticky ends of the triangle. Our results point to weak lattice interactions and high concentrations as decisive factors for achieving productive crystallization, while sample heterogeneity and impurities played a minor role.

20.
Sci Rep ; 6: 27498, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271801

RESUMO

The exceptionally conserved metazoan MAB21 proteins are implicated in cell fate decisions and share considerable sequence homology with the cyclic GMP-AMP synthase. cGAS is the major innate immune sensor for cytosolic DNA and produces the second messenger 2'-5', 3'-5' cyclic GMP-AMP. Little is known about the structure and biochemical function of other proteins of the cGAS-MAB21 subfamily, such as MAB21L1, MAB21L2 and MAB21L3. We have determined the crystal structure of human full-length MAB21L1. Our analysis reveals high structural conservation between MAB21L1 and cGAS but also uncovers important differences. Although monomeric in solution, MAB21L1 forms a highly symmetric double-pentameric oligomer in the crystal, raising the possibility that oligomerization could be a feature of MAB21L1. In the crystal, MAB21L1 is in an inactive conformation requiring a conformational change - similar to cGAS - to develop any nucleotidyltransferase activity. Co-crystallization with NTP identified a putative ligand binding site of MAB21 proteins that corresponds to the DNA binding site of cGAS. Finally, we offer a structure-based explanation for the effects of MAB21L2 mutations in patients with eye malformations. The underlying residues participate in fold-stabilizing interaction networks and mutations destabilize the protein. In summary, we provide a first structural framework for MAB21 proteins.


Assuntos
Linhagem da Célula , Proteínas de Homeodomínio/metabolismo , Sequência de Aminoácidos , Biopolímeros/química , Cristalografia por Raios X , Proteínas de Homeodomínio/química , Humanos , Conformação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA