Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Thromb Haemost ; 22(5): 1372-1388, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38278418

RESUMO

BACKGROUND: Blood plasma is the main source of extracellular vesicles (EVs) in clinical studies aiming to identify biomarkers and to investigate pathophysiological processes, especially regarding EV roles in inflammation and thrombosis. However, EV isolation from plasma has faced the fundamental issue of lipoprotein contamination, representing an important bias since lipoproteins are highly abundant and modulate cell signaling, metabolism, and thromboinflammation. OBJECTIVES: Here, we aimed to isolate plasma EVs after depleting lipoproteins, thereby improving sample purity and EV thromboinflammatory analysis. METHODS: Density-based gradient ultracentrifugation (G-UC) was used for lipoprotein depletion before EV isolation from plasma through size-exclusion chromatography (SEC) or serial centrifugation (SC). Recovered EVs were analyzed by size, concentration, cellular source, ultrastructure, and bottom-up proteomics. RESULTS: G-UC efficiently separated lipoproteins from the plasma, allowing subsequent EV isolation through SEC or SC. Combined analysis from EV proteomics, cholesterol quantification, and apoB-100 detection confirmed the significant reduction in lipoproteins from isolated EVs. Proteomic analysis identified similar gene ontology and cellular components in EVs, regardless of lipoprotein depletion, which was consistent with similar EV cellular sources, size, and ultrastructure by flow cytometry and transmission electron microscopy. Importantly, lipoprotein depletion increased the detection of less abundant proteins in EV proteome and enhanced thromboinflammatory responses of platelets and monocytes stimulated in vitro with EV isolates. CONCLUSION: Combination of G-UC+SEC significantly reduced EV lipoprotein contamination without interfering in EV cellular source, gene ontology, and ultrastructure, allowing the recovery of highly pure EVs with potential implications for functional assays and proteomic and lipidomic analyses.


Assuntos
Cromatografia em Gel , Vesículas Extracelulares , Lipoproteínas , Proteômica , Humanos , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Lipoproteínas/sangue , Plaquetas/metabolismo , Centrifugação com Gradiente de Concentração , Inflamação/sangue , Proteoma , Monócitos/metabolismo
2.
Cytotherapy ; 24(12): 1211-1224, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192337

RESUMO

BACKGROUND AIMS: Although bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated success in pre-clinical studies, they have shown only mild therapeutic effects in clinical trials. Hypoxia pre-conditioning may optimize the performance of bone marrow-derived MSCs because it better reflects the physiological conditions of their origin. It is not known whether changes in the protein profile caused by hypoxia in MSCs can be extended to the extracellular vesicles (EVs) released from them. The aim of this study was to evaluate the proteomics profile of MSCs and their EVs under normoxic and hypoxic conditions. METHODS: Bone marrow-derived MSCs were isolated from six healthy male Wistar rats. After achieving 80% confluence, MSCs were subjected to normoxia (MSC-Norm) (21% oxygen, 5% carbon dioxide, 74% nitrogen) or hypoxia (MSC-Hyp) (1% oxygen, 5% carbon dioxide, 94% nitrogen) for 48 h. Cell viability and oxygen consumption rate were assessed. EVs were extracted from MSCs for each condition (EV-Norm and EV-Hyp) by ultracentrifugation. Total proteins were isolated from MSCs and EVs and prepared for mass spectrometry. EVs were characterized by nanoparticle tracking analysis. Proteomics data were analyzed by PatternLab 4.0, Search Tool for the Retrieval of Interacting Genes/Proteins, Gene Ontology, MetaboAnalyst and Reactome software. RESULTS: Cell viability was higher in MSC-Hyp than MSC-Norm (P = 0.007). Basal respiration (P = 0.001), proton leak (P = 0.004) and maximal respiration (P = 0.014) were lower in MSC-Hyp than MSC-Norm, and no changes in adenosine triphosphate-linked and residual respiration were observed. The authors detected 2177 proteins in MSC-Hyp and MSC-Norm, of which 147 were identified in only MSC-Hyp and 512 were identified in only MSC-Norm. Furthermore, 718 proteins were identified in EV-Hyp and EV-Norm, of which 293 were detected in only EV-Hyp and 30 were detected in only EV-Norm. Both MSC-Hyp and EV-Hyp showed enrichment of pathways and biological processes related to glycolysis, the immune system and extracellular matrix organization. CONCLUSIONS: MSCs subjected to hypoxia showed changes in their survival and metabolic activity. In addition, MSCs under hypoxia released more EVs, and their content was related to expression of regulatory proteins of the immune system and extracellular matrix organization. Because of the upregulation of proteins involved in glycolysis, gluconeogenesis and glucose uptake during hypoxia, production of reactive oxygen species and expression of immunosuppressive properties may be affected.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Ratos , Masculino , Proteômica , Dióxido de Carbono/metabolismo , Ratos Wistar , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Nitrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA