RESUMO
This paper proposes a new communication protocol for output-feedback control through multi-hop Wireless Sensor Network (WSN). The protocol is based on a Hop-by-Hop transport scheme and is especially devised to simultaneously fulfill two conflicting criteria: the network energy consumption and the stability/performance (in terms of H∞ norm) of the closed-loop system. The proposed protocol can be implemented by means of three heuristics, basically using distinct rules to control the maximum number of retransmissions allowed in terms of the voltage level of the batteries of the network nodes. As another contribution, a Markov jump based representation is proposed to model the packet loss in the communication channel, giving rise to a systematic procedure to determine the transition probability matrix and the Markov chain operation modes of a network with multiple information sources. The synthesis of the output-feedback controller is made in two steps (observer filter plus a state-feedback controller) for the Markov model assuming partial availability of the operation modes. The efficiency and applicability of the communication protocol is illustrated by means of a numerical experiment, based on a physical model of a coupled tanks plant. The features of each heuristic of implementation of the proposed protocol are presented in the numerical comparisons.