Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(32): eadg9419, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566653

RESUMO

Planetary-scale giant storms erupt on Saturn quasiperiodically. There have been at least six recorded occurrences of past eruptions, and the most recent one was in 2010, with its whole life span captured by the Cassini mission. In 2015, we used the Very Large Array to probe the deep response of Saturn's troposphere to the giant storms. In addition to the remnant effect of the storm in 2010, we have found long-lasting signatures of all mid-latitude giant storms, a mixture of equatorial storms up to hundreds of years old, and potentially an unreported older storm at 70°N. We derive an ammonia anomaly map that shows an extended meridional migration of the storm's aftermath and vertical transport of ammonia vapor by storm dynamics. Intriguingly, the last storm in 2010 splits into two distinct components that propagate in opposite meridional directions, leaving a gap at 43°N planetographic latitude.

2.
Sci Adv ; 9(29): eadg3724, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478185

RESUMO

Ganymede is the only satellite in the solar system known to have an intrinsic magnetic field. Interactions between this field and the Jovian magnetosphere are expected to funnel most of the associated impinging charged particles, which radiolytically alter surface chemistry across the Jupiter system, to Ganymede's polar regions. Using observations obtained with JWST as part of the Early Release Science program exploring the Jupiter system, we report the discovery of hydrogen peroxide, a radiolysis product of water ice, specifically constrained to the high latitudes. This detection directly implies radiolytic modification of the polar caps by precipitation of Jovian charged particles along partially open field lines within Ganymede's magnetosphere. Stark contrasts between the spatial distribution of this polar hydrogen peroxide, those of Ganymede's other radiolytic oxidants, and that of hydrogen peroxide on neighboring Europa have important implications for understanding water-ice radiolysis throughout the solar system.

3.
Space Sci Rev ; 216(2): 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165773

RESUMO

Atmospheric circulation patterns derived from multi-spectral remote sensing can serve as a guide for choosing a suitable entry location for a future in situ probe mission to the Ice Giants. Since the Voyager-2 flybys in the 1980s, three decades of observations from ground- and space-based observatories have generated a picture of Ice Giant circulation that is complex, perplexing, and altogether unlike that seen on the Gas Giants. This review seeks to reconcile the various competing circulation patterns from an observational perspective, accounting for spatially-resolved measurements of: zonal albedo contrasts and banded appearances; cloud-tracked zonal winds; temperature and para-H2 measurements above the condensate clouds; and equator-to-pole contrasts in condensable volatiles (methane, ammonia, and hydrogen sulphide) in the deeper troposphere. These observations identify three distinct latitude domains: an equatorial domain of deep upwelling and upper-tropospheric subsidence, potentially bounded by peaks in the retrograde zonal jet and analogous to Jovian cyclonic belts; a mid-latitude transitional domain of upper-tropospheric upwelling, vigorous cloud activity, analogous to Jovian anticyclonic zones; and a polar domain of strong subsidence, volatile depletion, and small-scale (and potentially seasonally-variable) convective activity. Taken together, the multi-wavelength observations suggest a tiered structure of stacked circulation cells (at least two in the troposphere and one in the stratosphere), potentially separated in the vertical by (i) strong molecular weight gradients associated with cloud condensation, and by (ii) transitions from a thermally-direct circulation regime at depth to a wave- and radiative-driven circulation regime at high altitude. The inferred circulation can be tested in the coming decade by 3D numerical simulations of the atmosphere, and by observations from future world-class facilities. The carrier spacecraft for any probe entry mission must ultimately carry a suite of remote-sensing instruments capable of fully constraining the atmospheric motions at the probe descent location.

4.
Astron J ; 156(2)2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30510304

RESUMO

Small-scale waves were observed along the boundary between Jupiter's North Equatorial Belt and North Tropical Zone, ~16.5° N planetographic latitude in Hubble Space Telescope data in 2012 and throughout 2015 to 2018, observable at all wavelengths from the UV to the near IR. At peak visibility, the waves have sufficient contrast (~10%) to be observed from ground-based telescopes. They have a typical wavelength of about 1.2° (1400 km), variable-length wave trains, and westward phase speeds of a few m/s or less. New analysis of Voyager 2 data shows similar wave trains over at least 300 hours. Some waves appear curved when over cyclones and anticyclones, but most are straight, but tilted, shifting in latitude as they pass vortices. Based on their wavelengths, phase speeds, and faint appearance at high-altitude sensitive passbands, the observed NEB waves are consistent with inertia-gravity waves at the 500-mbar pressure level, though formation altitude is not well constrained. Preliminary General Circulation Model simulations generate inertia-gravity waves from vortices interacting with the environment and can reproduce the observed wavelengths and orientations. Several mechanisms can generate these waves, and all may contribute: geostrophic adjustment of cyclones; cyclone/anticyclone interactions; wind interactions with obstructions or heat pulses from convection; or changing vertical wind shear. However, observations also show that the presence of vortices and/or regions of convection are not sufficient by themselves for wave formation, implying that a change in vertical structure may affect their stability, or that changes in haze properties may affect their visibility.

5.
Science ; 352(6290): 1198-201, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257253

RESUMO

Radio wavelengths can probe altitudes in Jupiter's atmosphere below its visible cloud layers. We used the Very Large Array to map this unexplored region down to ~8 bar, ~100 kilometers below the visible clouds. Our maps reveal a dynamically active planet at pressures less than 2 to 3 bar. A radio-hot belt exists, consisting of relatively transparent regions (a low ammonia concentration, NH3 being the dominant source of opacity) probing depths to over ~8 bar; these regions probably coincide with 5-micrometer hot spots. Just to the south we distinguish an equatorial wave, bringing up ammonia gas from Jupiter's deep atmosphere. This wave has been theorized to produce the 5-micrometer hot spots; we observed the predicted radio counterpart of such hot spots.

6.
Science ; 318(5852): 962-5, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17932256

RESUMO

Precipitation is expected in Titan's atmosphere, yet it has not been directly observed, and the geographical regions where rain occurs are unknown. Here we present near-infrared spectra from the Very Large Telescope and W. M. Keck Observatories that reveal an enhancement of opacity in Titan's troposphere on the morning side of the leading hemisphere. Retrieved extinction profiles are consistent with condensed methane in clouds at an altitude near 30 kilometers and concomitant methane drizzle below. The moisture encompasses the equatorial region over Titan's brightest continent, Xanadu. Diurnal temperature gradients that cause variations in methane relative humidity, winds, and topography may each be a contributing factor to the condensation mechanism. The clouds and precipitation are optically thin at 2.0 micrometers, and models of "subvisible" clouds suggest that the droplets are 0.1 millimeter or larger.


Assuntos
Metano , Saturno , Atmosfera , Meio Ambiente Extraterreno , Temperatura
7.
Science ; 317(5846): 1888-90, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17717152

RESUMO

The rings of Uranus are oriented edge-on to Earth in 2007 for the first time since their 1977 discovery. This event provides a rare opportunity to observe their dark (unlit) side, where dense rings darken to near invisibility, but faint rings become much brighter. We present a ground-based infrared image of the unlit side of the rings that shows that the system has changed dramatically since previous views. A broad cloud of faint material permeates the system but is not correlated with the well-known narrow rings or with the embedded dust belts imaged by the Voyager spacecraft. Although some differences can be explained by the unusual viewing angle, we conclude that the dust distribution within the system has changed substantially since the 1986 Voyager encounter and that it occurs on much larger scales than has been seen in other planetary systems.

8.
Science ; 312(5770): 92-4, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16601188

RESUMO

We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings.


Assuntos
Poeira Cósmica , Urano , Gelo
9.
Nature ; 439(7076): 565-7, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16452974

RESUMO

The Trojan population consists of two swarms of asteroids following the same orbit as Jupiter and located at the L4 and L5 stable Lagrange points of the Jupiter-Sun system (leading and following Jupiter by 60 degrees ). The asteroid 617 Patroclus is the only known binary Trojan. The orbit of this double system was hitherto unknown. Here we report that the components, separated by 680 km, move around the system's centre of mass, describing a roughly circular orbit. Using this orbital information, combined with thermal measurements to estimate the size of the components, we derive a very low density of 0.8(- 0.1)+0.2 g cm(-3). The components of 617 Patroclus are therefore very porous or composed mostly of water ice, suggesting that they could have been formed in the outer part of the Solar System.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA