Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Manage ; 73(2): 395-407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37796334

RESUMO

Promoting the diversity of biological communities in areas of agricultural production is a very current debate since protected areas may not be sufficient to ensure biodiversity conservation. Among the biological communities affected by the production areas are birds, which show rapid responses to changes in the landscape. Here we seek to understand how landscape planning, concerning its composition and configuration, in areas with a matrix of planted Eucalyptus spp. forests influences the functional diversity of bird assemblages in the Atlantic Forest. Our results show that the spatial distribution design of planted forests in terms of age, land cover and clone types have effects on bird diversity with regard to functional divergence, functional evenness and species richness. These results reinforce the importance of good management for the maintenance of bird diversity. We found that bird functional diversity in planted forest matrices increased with the proximity index, proportion of native vegetation and age importance value, and is negatively influenced by edge density and proportion of forest plantation. For bird conservation, it is thus better to associate Eucalyptus spp. with other cover types in the landscape. These results corroborate that, to increase bird functional diversity, it is possible to associate conservation and production in the same landscape. Mosaic landscapes have great potential to contribute to the conservation of bird biodiversity outside protected areas. However, decisions regarding the management of planted forests and planning of improved areas intended for conservation seem to be decisive to ensure the maintenance of bird biodiversity.


Assuntos
Eucalyptus , Animais , Florestas , Biodiversidade , Biota , Aves/fisiologia , Ecossistema
2.
Sci Total Environ ; 828: 154425, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276136

RESUMO

Forest regeneration has increased in many tropical abandoned lands and current restoration commitments in this region aim to restore over 1,400,000 km2 of degraded land by 2030. Although regenerating forests recover biomass, biodiversity, and processes with time, the recovery trajectories may be uncertain due to past disturbances. Currently, there is a lack of knowledge to sustain the effectiveness of passive regeneration for the recovery of riparian forests and the adjacent waterbodies in the tropics, which may compromise the outcomes of ongoing and future tropical riparian restoration programs. We evaluated the drivers of riparian forest structural recovery and how this relates to stream conditions in 12 abandoned pasturelands in eastern Brazilian Amazonia. These pasturelands range across regeneration age (pasture (PA) - 0 to 4 years; young regeneration (YR) - 8 to 12 years; old regeneration (OR) - 18 to 22 years) and years of past land-use (PA - 23.25 average years of past land-use, YR - 18.25, OR - 7). We compared the conditions of these sites to 4 reference sites with conserved forests (REF, >100 years), where there was no recorded pasture use in the past. Short-term responses of forests and streams to passive regeneration indicated high ecosystem resilience after low to intermediate past land-use intensity, reflected in the improvement of stream ecosystems. Such high resilience is possibly attributable to low- to intermediate-intensity pasture-related disturbances, remaining forest matrix, and residual structures (e.g. roots, sprouts, and in-stream wood) observed in the area. Our results suggest a recovery by 12 to 20 years for riparian forests of this region. However, areas degraded by intensive land-use apparently showed delayed recovery. We conclude that seizing resilience windows (defined here as the period when ecosystems retain high potential resilience) is essential to foster passive recovery of riparian forests and streams more cost-effectively in the tropics.


Assuntos
Ecossistema , Água , Biodiversidade , Florestas , Rios , Árvores
3.
Environ Manage ; 48(4): 750-63, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21822981

RESUMO

Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height <10 cm) in all studied streams. Results showed that basal area and diameter of riparian forest differed between the stream groups (forested and non-forested), but tree density did not differ between groups. Differences were also observed in LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest conservation actions must consider not only its extension, but also successional stage to guarantee the quantity and quality of LWD necessary to enable the structuring of stream channels.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Ecossistema , Rios , Árvores , Análise de Variância , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA