Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(26): 31849-31866, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345864

RESUMO

Herein, we explore the potential of innovative manufacturing techniques based on green chemistry principles, for the fabrication of convenient, performant, and stable supported photocatalysts to be used for water depollution. After giving some insight into the use of fractal geometry for the fabrication of tunable polymer supports for photocatalysts, we investigated the use of liquid crystal display (LCD) 3D printing to generate the fractal resin substrates to be used for the immobilization of semiconductor photocatalysts. Notably, confocal laser imaging was used as a first attempt for assessing the surface area of the fractal substrate. Immobilization methods based on cold plasma discharge (CPD) were employed to modify the surface of the polymer substrates and permanently anchor three different phases, namely, nickel-based metal-organic framework (Ni-MOF), BiOI, and AgVO3, in a hierarchical configuration. Herein, for the first time, we developed a plasma-initiated condensed in situ complexation-assisted precipitation (c-ISCAP) method that allowed 2D Ni-MOF to be synthesized directly onto the surface of a polymer substrate, in a single step. Not only this MOF coating was found to be strongly bound to the surface of the polymer substrate but also very uniform and fully functional, even when other inorganic phases were immobilized on the top of this layer. This chemical approach opens the way for the fabrication of hybrid materials with complex polymer substrates and MOF coatings that could be used in a range of possible applications, for instance as chemical sensors, electrodes, adsorbents, optical devices, etc. Our hybrid photocatalysts were tested via photodegradation of Rhodamine B (RhB) dye upon visible light activation, with recycling runs to assess their durability. It was found that the hierarchical heterojunction Ni-MOF/BiOI/AgVO3 showed an outstanding ability for the removal of RhB dye, owing to the activity of the Ni-MOF layer in terms of charge transfer, and also partly because of its adsorbing potential. The three photoactive phases demonstrated a strong synergistic effect through coupling. However, more importantly, our findings show that their immobilization itself, regardless of the method used, significantly modified their optoelectronic properties, hence most likely changing the overall mechanism of charge transfer in the heterojunction. The Ni-MOF phase, notably, was found to display a reduced bandgap when obtained by c-ISCAP, which contributed to enhance its activation by visible light irradiation. Finally, it was established that the fractal geometry had a significant impact on the efficiency of the supported catalysts, probably thanks to an increased immobilization ratio of photocatalyst mostly, owing to the larger surface area available.

2.
Chem Commun (Camb) ; 59(33): 4923-4926, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37010849

RESUMO

A new process, PMOFSA, is described here, that opens the way for the one-pot straightforward and versatile manufacture of polymer-MOF nanoparticles in water. It can be expected that this study will not only expand the scope of in situ preparation of polymer-MOF nano-objects but also inspire researchers in the field to prepare a new generation of polymer-MOF hybrid materials.

3.
ACS Appl Mater Interfaces ; 14(9): 11820-11833, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195390

RESUMO

The combination of a phosphor with semiconductor photocatalysts can provide photoactivity in the dark. Indeed, the phosphor acts as a "light battery", harvesting photons during irradiation and later re-emitting light that can be used by the catalytic phase when in conditions of total darkness. This allows for continued activity of the composite catalyst, even in conditions of unstable light stimulation. In this study, we assess the use of a heterojunction, namely graphitic-C3N4/Ag3PO4, that enables efficient photoactivity specifically under visible light stimulation, in combination with a phosphor that exhibits green-blue phosphorescence (510 nm), that is SrAl2O4:Eu2+,Dy3+. Our findings showed that this combination was particularly interesting, noticeably displaying significant photoactivity in darkness, after short periods of activation by visible light. After finding the right combination and optimal ratios for maximum efficiency, the resulting catalyst composite was immobilized on resin supports with a fractal surface, printed by LCD-SLA 3D printing. The immobilization was effectuated via an aqueous-phase plasma-aided grafting (APPAG) process, using cold plasma discharge (CPD) and using vinylphosphonic acid (VPA) as a coupling agent. Whereas the colloidal photocatalyst displayed a serious problem of partial physical separation between the catalytic phase, g-C3N4/Ag3PO4, and the phosphor, the immobilization of the composite catalyst on polymer supports allowed solving this issue. Photodegradation assessments confirmed that the hybrid supported phosphor-enhanced catalyst was active, notably in dark conditions, as well as fairly photostable. This study offers new prospects for the fabrication of polymer-based panels for water purification, with round-the-clock activity and that are, in addition, extremely easy to recover and reuse, by comparison with colloidal catalysts.

4.
ACS Appl Mater Interfaces ; 11(27): 24771-24781, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31250631

RESUMO

The present paper partly aims at exploring the potential of fractal geometry for concrete applications in the field of materials science. It is more specifically a study about the conception of hybrid polymer-based materials with photocatalytic activity. The concept behind this work is to investigate the use of polymer fractal structures manufactured by 3D-printing technology, as a highly ordered substrate with an important surface area to immobilize catalyst nanoparticles, by means of plasma grafting technology. Two types of fractal units, fractal pyramids (fracmids) and fractal cones (fracones), have been described and the former has been extensively characterized on a geometrical aspect. Various complex superstructures have also been described using fractal units as building blocks. 3D structures based on the aforementioned theoretical models have been designed using computer-aided design (CAD). On the basis of CAD models, several structures have been 3D-printed with PLA using fused deposition modeling. PLA substrates have been successfully coated with nanoparticles of ZnO using a combination of core-shell synthesis and plasma grafting. Finally, the photocatalytic activity of a hybrid material has been assessed with a positive outcome, showing the relevance of the concept developed in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA