RESUMO
Grafting is widely used in horticulture. Shortly after grafting, callus tissues appear at the graft interface and the vascular tissues of the scion and rootstock connect. The graft interface contains a complex mix of tissues, we hypothesised that each tissue has its own metabolic response to wounding/grafting and accumulates different metabolites at different rates. We made intact and wounded cuttings and grafts of grapevine, and then measured changes in bulk flavonoid, phenolic acid and stilbenoid concentration and used metabolite imaging to study tissue-specific responses. We show that some metabolites rapidly accumulate in specific tissues after grafting, for example, stilbene monomers accumulate in necrotic tissues surrounding mature xylem vessels. Whereas other metabolites, such as complex stilbenes, accumulate in the same tissues at later stages. We also observe that other metabolites accumulate in the newly formed callus tissue and identify genotype-specific responses. In addition, exogenous resveratrol application did not modify grafting success rate, potentially suggesting that the accumulation of resveratrol at the graft interface is not linked to graft union formation. The increasing concentration of complex stilbenes often occurs in response to plant stresses (via unknown mechanisms), and potentially increases antioxidant activity and antifungal capacities.
Assuntos
Estilbenos , Vitis , Resveratrol/metabolismo , Estilbenos/metabolismo , Plantas/metabolismo , Antioxidantes/metabolismo , Vitis/fisiologiaRESUMO
We report on the first evidence of a varietal origin of eugenol as a molecular marker in Baco blanc, one of the grape varieties used to produce Armagnac. Eugenol was identified and quantified by HS-SPME-GC-MS. For two separate vintages, the concentrations found in monovarietal wine spirits made from Baco blanc, were, on average, 10 times higher than those in other Vitis varieties, ranging from 31.0 to 174.7 µg/L. Investigations were carried out to quantify eugenol in the wines used for distillation, in the musts and finally in several parts of the plant. For all matrices over both vintages, it was confirmed that eugenol is much more abundant in Baco blanc than in Ugni blanc and Folle blanche. Moreover, enzymatic hydrolysis made it possible to release a significant quantity of eugenol from precursors, demonstrating that more than 90% of eugenol is bound in the must and in the grape berry pulp.
Assuntos
Vitis , Vinho , Vitis/metabolismo , Vinho/análise , Eugenol/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , FrutasRESUMO
Pesticides used for plant protection can indirectly affect target and non-target organisms and are identified as a major cause of insect decline. Depending on species interactions, pesticides can be transferred into the environment from plants to preys and predators. While the transfer of pesticides is often studied through vertebrate and aquatic exposure, arthropod predators of insects may represent valuable bioindicators of environmental exposure to pesticides. A modified QuEChERS extraction coupled with HPLC-MS/MS analysis was used to address the question of the exposure to pesticides of the invasive hornet Vespa velutina, a specialist predator of honey bees. This analytical method allows the accurate quantification of nanogram/gram levels of 42 contaminants in a sample weight that can be obtained from single individuals. Pesticide residues were analyzed in female workers from 24 different hornet nests and 13 different pesticides and 1 synergist, piperonyl butoxide, were identified and quantified. In 75 % of the explored nests, we found at least one compound and in 53 % of the positive samples we could quantify residues ranging from 0.5 to 19.5 ng.g-1. In this study, hornets from nests located in sub-urban environments were the most contaminated. Pesticide residue analysis in small and easy to collect predatory insects opens new perspectives for the study of environmental contamination and the transfer of pesticides in terrestrial trophic chains.
Assuntos
Resíduos de Praguicidas , Praguicidas , Vespas , Abelhas , Animais , Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise , Poluição Ambiental/análiseRESUMO
Three major compounds, 2-acetyl-1-pyrroline (APY), 2-acetyltetrahydropyridine (ATHP) and 2-ethyltetrahydropyridine (ETHP), have been identified as responsible for the mousy off-flavor in wines, although to date quantification data reported in the literature are limited. A simple method for simultaneous quantitation, by SBSE-GC-MS, of these N-heterocyclic compounds was developed. Both previously reported tautomers of ATHP, 2-acetyl-1,4,5,6-tetrahydropyridine and 2-acetyl-3,4,5,6-tetrahydropyridine were identified. The limits of detection and quantification of the method were determined in white, rosé and red wines and are lower than previously published concentrations in spoiled wine. ETHP was detected in almost all wines produced with limited use of SO2. ATHP was detected in almost all wines suspected of mousiness whereas APY was only detected in few cases. This method will provide a support for further studies aimed at understanding the phenomena that influence the occurrence of mousy off-flavor and the oenological parameters that modulate its expression.
Assuntos
Vinho , Animais , Camundongos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Vinho/análiseRESUMO
Grafting is an important horticultural technique used for many crop species. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. In general, visible phenotypes of grafted plants (size, root number, etc.) are poorly correlated with grafting success, but some studies have suggested that some polyphenols could be used as markers of graft incompatibility several months or years after grafting. However, much of the previous studies into metabolite markers of grafting success have not included all the controls necessary to unequivocally validate the markers proposed. In this study, we quantified 73 primary and secondary metabolites in nine hetero-grafts and six homo-grafted controls 33 days after grafting at the graft interface and in both the scion and rootstock woody tissues. Certain biomarker metabolites typical of a high stress status (such as proline, GABA and pallidol) were particularly accumulated at the graft interface of the incompatible scion/rootstock combination. We then used correlation analysis and generalized linear models to identify potential metabolite markers of grafting success measured one year after grafting. Here we present the first attempt to quantitatively predict graft compatibility and identify marker metabolites (especially asparagine, trans-resveratrol, trans-piceatannol and α-viniferin) 33 days after grafting, which was found to be particularly informative for homo-graft combinations.
RESUMO
A novel automated method was developed for the quantitative determination of nine terpenoids that could contribute to the minty notes of red wine bouquet. The method couples headspace SPME-Arrow extraction with GC-MS/MS analysis. PDMS/DVB fiber was chosen for the extraction and an ionization energy of 30 eV permitted to optimize the analyte detection. The optimal sample preparation consists of a two-fold dilution of the wine sample with addition of 4 g of sodium chloride while the most suitable extraction conditions take place at 50 °C for 1 h. The method shows good linearity, intraday variations between 2 and 25%, interday variations between 7 and 23% and recoveries between 80 and 119%. The method exhibits the required low detection (between 3 and 60 ng/L) and quantification (between 6 ng/L and 200 ng/L) limits. These limits have permitted the quantification of the pool of minty terpenoids in fourteen red Bordeaux wines.
Assuntos
Odorantes/análise , Microextração em Fase Sólida/métodos , Terpenos/isolamento & purificação , Vinho/análise , Monoterpenos Cicloexânicos/análise , Monoterpenos Cicloexânicos/isolamento & purificação , Dimetilpolisiloxanos , Eucaliptol/análise , Eucaliptol/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lactonas/análise , Lactonas/isolamento & purificação , Limoneno/análise , Limoneno/isolamento & purificação , Mentha , Mentol/análise , Mentol/isolamento & purificação , Polivinil , Espectrometria de Massas em Tandem/métodos , Terpenos/análiseRESUMO
Asian and American Vitis species possess a strong potential for crossbreeding programs, owing to their several resistance properties. Stilbenes are phenolic compounds present in grape berries and are well-known for their main role as phytoalexins and resistance to biotic stresses in plants. However, their identification and quantification in grape berries from wild Vitis remains unexplored. A mass spectrometry multiple reaction monitoring method combined with the analysis of pure standards allowed for the unambiguous characterization of 20 stilbenes in the grape berry skin extracts of nine native Vitis species and one cultivated Vitis vinifera species (cv. Cabernet Sauvignon). A main occurrence of monomeric (Z-piceid, E-piceid, E-isorhapontin, and E-astringin), dimeric (E-ε-viniferin, Z-ε-viniferin, and pallidol), and oligomeric (isohopeaphenol and r-viniferin) stilbenes was highlighted. Some stilbenes were clearly characterized for the first time in grape berries, such as the dimers ampelopsin A, E-vitisinol C, and parthenocissin A as well as the tetramers r2-viniferin and r-viniferin. Stilbene composition and content varied widely among several Vitis species and vintage years.
Assuntos
Extratos Vegetais/química , Estilbenos/química , Vitis/química , Frutas/química , Frutas/classificação , Espectrometria de Massas , Estrutura Molecular , Fenóis/química , Vitis/classificaçãoRESUMO
Wine is generally considered as hostile medium in which spoilage microbes have to manage with many abiotic factors among which low nutrient content. Wines elaborated in 8 wineries were sampled during the first summer of aging over two consecutive vintages, and analysed for carbohydrate composition. This revealed the systematic presence of many carbohydrates including those useful for the spoilage yeast Brettanomyces bruxellensis. However, during the first summer of aging, the changes in wine carbohydrate composition were low and it was difficult to assess how much carbohydrate composition contributed to wine spoilage by B. bruxellensis. Subsequent laboratory experiments in inoculated wines showed that the sugars preferentially consumed in wine by the spoilage yeast are d-glucose, d-fructose, and trehalose, whatever the yeast strain considered. The addition of these sugars to red wines accelerates the yeast growth and the volatile phenols formation. Although probably not the only promoting factor, the presence of high amounts of metabolisable sugars thus really increases the risk of "brett" spoilage.
Assuntos
Brettanomyces/isolamento & purificação , Carboidratos/química , Contaminação de Alimentos/análise , Vinho/microbiologia , Brettanomyces/genética , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Metabolismo dos Carboidratos , Fermentação , Microbiologia de Alimentos , Vinho/análiseRESUMO
Resveratrol is a well-known wine constituent. Its concentration can vary according to the cultivar choice and the winemaking process. Due to its phenolic structure, resveratrol could be transformed under high temperature or oxidative conditions, leading to the formation of various derivatives including oligomers. Hence, the goal of this study is to investigate the presence of these derivatives in wine. In the first stage, hemisynthesis of oligomeric stilbenes was achieved from resveratrol in ethanol by oxidative coupling using metals. Four de novo synthetized resveratrol derivatives were identified by MS and NMR spectroscopy including two new molecules, oxistilbenin F and oxistilbenin G. In the second stage, analysis of red wine after heat treatment by LC-MS confirmed the presence of some of these compounds in wine. Finally, the anti-inflammatory effects of the compounds were evaluated by studying their ability to prevent lipopolysaccharide (LPS)-induced upregulation of nitric oxide (NO) and reactive oxygen species (ROS) production in RAW 264.7 macrophage cell line.
Assuntos
Temperatura Alta , Resveratrol/química , Resveratrol/farmacologia , Vinho/análise , Bebidas Alcoólicas/análise , Animais , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico , Fenóis/análise , Células RAW 264.7 , Espécies Reativas de Oxigênio , Estilbenos/análiseRESUMO
Grapevine canes are an abundant byproduct of the wine industry. The stilbene contents of Vitis vinifera cultivars have been largely studied, but little is known about the stilbene contents of wild Vitis accessions. Moreover, there have only been few studies on the quantification of other phenolic compounds in just pruned grapevine canes. In our study, we investigated the polyphenol profile of 51 genotypes belonging to 15 Vitis spp. A total of 36 polyphenols (20 stilbenes, 6 flavanols, 7 flavonols, and 3 phenolic acids) were analyzed by high-performance liquid chromatography coupled with a triple quadrupole mass spectrometer. Our results suggest that some wild Vitis accessions could be of interest in terms of the concentration of bioactive polyphenols and that flavanols contribute significantly to the antioxidant activity of grapevine cane extracts. To the best of our knowledge, this is the most exhaustive study of the polyphenolic composition of grapevine canes of wild Vitis spp.
Assuntos
Extratos Vegetais/química , Caules de Planta/química , Polifenóis/química , Vitis/química , Antioxidantes/química , Antioxidantes/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonóis/química , Flavonóis/metabolismo , Espectrometria de Massas , Extratos Vegetais/metabolismo , Caules de Planta/metabolismo , Polifenóis/metabolismo , Estilbenos/química , Estilbenos/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/metabolismoRESUMO
Brettanomyces bruxellensis is a yeast species found in many fermented matrices. A high level of genetic diversity prevails in this species and was recently connected with tolerance to sulfur dioxide, the main preservative used in wine. We therefore examine other phenotypes that may modulate the ability of the species to spoil wine, in a selection of representative strains. The species shows a fairly high homogeneity with respect to the carbohydrates that can support growth, but more diverse behaviors regarding tolerance to low pH or ethanol. Thought no clear link can be drawn with genotype, some strains appear more tolerant than the others, mainly in the AWRI1499 like genetic group. Volatile phenol production is ubiquitous within the species, independent from yeast growth profile and not affected by the nature of the growth substrate. The specific production. n rate of volatile phenol production raises in case of increased aeration. It is little affected by pH decrease until 3.0 or by ethanol concentration increase up to 12% vol, but it decreased in case of increased constraint (pH < 3.0, Ethanol ≥14% vol) or combination of constraints. All the strain studied have thus the ability to spoil wine but some outstanding dangerous strains can even spoil the wine with high level of constrainst.
Assuntos
Brettanomyces/isolamento & purificação , Vinho/microbiologia , Brettanomyces/efeitos dos fármacos , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Etanol/metabolismo , Conservantes de Alimentos/farmacologia , Genótipo , Concentração de Íons de Hidrogênio , Fenótipo , Dióxido de Enxofre/farmacologia , Vinho/análiseRESUMO
Wine aging bouquet is defined as a positive, complex evolution of aromas during bottle aging. The aim of this study was to look for the link between some of the vine status parameters and the development, during wine aging, of volatile compounds such as DMS, tabanones, and some wine aromatic heterocycles. The potential influence of air temperature was investigated as well as vine nitrogen and water status. Wines were obtained by microvinification from plots of Vitis vinifera L. cv. Merlot, Cabernet-Sauvignon, and Cabernet franc, over vintages from 1996 to 2007, and cellar-aged until 2014. Wine aging aromas were quantified using gas chromotography-mass spectrometry. The effects of the vintage and vine water and nitrogen status were greater than the varietal effects. The nine aroma compounds measured showed very high levels in the 2003 vintage. The results revealed a positive link between vine nitrogen status and dimethyl-sulfide and N, S, O-heterocycle levels measured in the aged wines. Levels of 4-[2-butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one and 4-[( 3E)-1-butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one (megastigmatrienones; tabanone) isomers increased when the vines were affected by a water deficit.
Assuntos
Aromatizantes/química , Nitrogênio/análise , Vitis/química , Compostos Orgânicos Voláteis/química , Água/análise , Vinho/análise , Irrigação Agrícola , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Isomerismo , Nitrogênio/metabolismo , Temperatura , Fatores de Tempo , Vitis/metabolismo , Água/metabolismoRESUMO
BACKGROUND: Grafting with rootstocks is essential for the culture of many perennial fruit crops and is increasing being used in the production of annual fruits and vegetables. Our previous work based on microarrays showed that transcripts encoding enzymes of both primary and secondary metabolism were differentially expressed during graft union formation in both homo-grafts (a genotype grafted with itself) and hetero-grafts (two different genotypes grafted together). The aim of this study was to profile primary and secondary metabolites, and quantify the activity of phenylalanine ammonia lyase (PAL) and neutral invertase (NI) in the scion and rootstock tissues and the graft interface of homo and hetero-grafts of grapevine 1 month after grafting. Table-top grafting was done on over-wintering stems (canes) of grapevine and the graft interface tissues (containing some woody stem tissues and callus) were compared to the surrounding rootstock and scion tissues. The objective was to identify compounds involved in graft union formation and hetero-grafting responses. RESULTS: A total of 54 compounds from primary and secondary metabolism (19 amino acids, five primary and 30 secondary compounds metabolites) and the activity of two enzymes were measured. The graft interface was associated with an increase in the accumulation of the branched-chain amino acids, basic amino acids, certain stilbene compounds and higher PAL and NI activity in comparison to the surrounding woody stem tissues. Some amino acids and stilbenes were identified as being accumulated differently between the graft interfaces of the scion/rootstock combinations in a manner which was unrelated to their concentrations in the surrounding woody stem tissues. CONCLUSIONS: This study revealed the modification of primary metabolism to support callus cell formation and the stimulation of stilbene synthesis at the graft interface, and how these processes are modified by hetero-grafting. Knowledge of the metabolites and/or enzymes required for successful graft union formation offer us the potential to identify markers that could be used by nurseries and researchers for selection and breeding purposes.
Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Estilbenos/metabolismo , Vitis/genética , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Vitis/enzimologia , Vitis/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismoRESUMO
A novel analytical method was developed for quantitative determination of eight limonene-derived monoterpenes responsible for the mint aroma in red wine. As these aromatic compounds are present at trace levels, a new dual extraction approach was proposed, combining solid-phase extraction (SPE) and stir bar sorptive extraction (SBSE), followed by gas chromatography-mass spectrometry analysis. The various parameters affecting the efficiency of extracting the analytes from wine samples in both the SPE and SBSE steps were first investigated, to determine the best compromise for the simultaneous analysis of the compounds studied. Following preliminary optimization of the dilution factor, phase ratio, and methanol content in the SBSE sample, cartridge sorbent mass, type of solvent, elution volume, and wine sample volume in the pre-concentration SPE step were studied. Highest response values were obtained when a 90â¯mL wine sample was extracted on a 500â¯mg SPE C18 cartridge and eluted with 1.5â¯mL methanol. The wine extract was then diluted in 10â¯mL water to obtain a final methanol content of 15% before the SBSE step. Good linearity, repeatability, reproducibility, accuracy and the required low detection and quantification limits were obtained under the conditions described, making this SPE-SBSE combination a suitable, powerful tool for routine analysis of the selected limonene-derived mint aroma compounds in large series of wine samples. Finally, the validated method was applied to 15 commercial red Bordeaux wines, aged from 3 to 23 years. Most of the compounds studied, present within the ng.L-1 range, were easily quantified for the first time in wine.
Assuntos
Cicloexenos/análise , Aditivos Alimentares/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Mentha/química , Odorantes/análise , Extração em Fase Sólida/métodos , Terpenos/análise , Vinho/análise , Limite de Detecção , Limoneno , Monoterpenos/análise , Reprodutibilidade dos TestesRESUMO
This research investigated the influence of lactic acid bacteria (LAB) strains on ester levels in Bordeaux red wines. These wines were made in five Bordeaux areas in two vintages, using three yeast strains. Malolactic fermentation (MLF) was carried out using industrial starters or indigenous strains, each in triplicate. Ester concentrations were determined by liquid-liquid-extraction- or HS-SPME-GC/MS at various stages in the winemaking process. The levels of most compounds were slightly impacted by LAB, depending on grape variety. Nevertheless, branched hydroxylated esters, such as ethyl 2-hydroxy-3-methylbutanoate and ethyl 2-hydroxy-4-methylpentanoate were the only compounds to be strongly influenced by the bacteria strain, regardless of matrix composition or the yeasts used for alcoholic fermentation. Moreover, the effect observed after MLF persisted over time, for at least 12months. These esters are apparently important markers of LAB esterase activity. To our knowledge, this was the first time they had been identified in this role.
Assuntos
Ácido Láctico/metabolismo , Fermentação , Valeratos , Vitis , VinhoRESUMO
The aim of this study was to investigate the influence of vine water status on bouquet typicality, revealed after aging, and the perception of three aromatic notes (mint, truffle, and undergrowth) in bottled fine red Bordeaux wines. To address the issue of the role of vine water deficit in the overall quality of fine aged wines, a large set of wines from four Bordeaux appellations were subjected to sensory analysis. As vine water status can be characterized by carbon isotope discrimination (δ13C), this ratio was quantified for each wine studied. Statistical analyses combining δ13C and sensory data highlighted that δ13C-values discriminated effectively between the most- and least-typical wines. In addition, Principal Component Analysis (PCA) revealed correlations between δ13C-values and truffle, undergrowth, and mint aromatic notes, three characteristics of the red Bordeaux wine aging bouquet. These correlations were confirmed to be significant using a Spearman statistical test. This study highlighted for the first time that vine water deficit positively relates to the perception of aging bouquet typicality, as well as the expression of its key aromatic nuances.
RESUMO
BACKGROUND: The typical fruity aroma of red Bordeaux wines depends on the grape variety but also on microbiological processes, such as alcoholic and malolactic fermentations. These transformations involve respectively the yeast Saccharomyces cerevisiae and the lactic acid bacterium Oenococcus oeni. Both species play a central role in red winemaking but their quantitative and qualitative contribution to the revelation of the organoleptic qualities of wine has not yet been fully described. The aim of this study was to elucidate the influence of sequential inoculation of different yeast and bacteria strains on the aromatic profile of red Bordeaux wine. RESULTS: All microorganisms completed fermentations and no significant difference was observed between tanks regarding the main oenological parameters until 3 months' aging. Regardless of the yeast strain, B28 bacteria required the shortest period to completely degrade the malic acid, compared to the other strain. Quantification of 73 major components highlighted a specific volatile profile corresponding to each microorganism combination. However, the yeast strain appeared to have a predominant effect on aromatic compound levels, as well as on fruity aroma perception. CONCLUSION: Yeasts had a greater impact on wine quality and have more influence on the aromatic style of red wine than bacteria. © 2017 Society of Chemical Industry.
Assuntos
Oenococcus/metabolismo , Saccharomyces cerevisiae/metabolismo , Vitis/microbiologia , Vinho/microbiologia , Fermentação , Aromatizantes/análise , Aromatizantes/metabolismo , Malatos/análise , Malatos/metabolismo , Odorantes/análise , Vitis/química , Vinho/análiseRESUMO
Champagne regulations allow winegrowers to stock still wines to compensate for quality shifts in vintages, mainly due to climate variations. According to their technical requirements and house style, Champagne producers use these stored wines in their blends to enhance complexity. The presence of lees and aging at low pH (2.95-3.15), as in Champagne wines, lead to several modifications in wine composition. These conditions, combined with extended aging, result in the required environment for the Maillard chemical reaction, involving aromatic molecules, including sulfur, oxygen, and nitrogen heterocycles (such as thiazole, furan, and pyrazine derivatives), which may have a sensory impact on wine. Some aromatic heterocycles in 50 monovarietal wines aged from 1 to 27 years provided by Veuve Clicquot Ponsardin Champagne house were determined by the SPME-GC-MS method. The most interesting result highlighted a strong correlation between certain heterocycle concentrations and wine age. The second revealed a correlation between heterocyclic compound and free amino acid concentrations measured in the wines, suggesting that these compounds are potential aromatic precursors when wine is aged on lees and, thus, potential key compounds in the bouquet of aged Champagnes. The principal outcome of these assays was to reveal, for the first time, that aromatic heterocycle concentrations in Champagne base wines are correlated with wine age.
Assuntos
Aminoácidos/análise , Nitrogênio/análise , Oxigênio/análise , Enxofre/análise , Vinho/análise , Armazenamento de Alimentos , Concentração de Íons de Hidrogênio , Fatores de TempoRESUMO
The p-menthane lactones constitute a family of powerful odorants, including the isomers of mintlactone and menthofurolactone that occur naturally in peppermint oil, known for their potent, mint-like olfactory properties. These lactones are closely related to the monoterpene-limonene secondary biotransformation and menthofuran has been identified as their common precursor in Mentha species. Using targeted GC-olfactometry and GC-MS analyses, together with quantification methods, we were able to demonstrate, for the first time, the presence of the diastereoisomers of these p-menthane lactones, as well as their common precursor, menthofuran, in red wines. In addition, we linked the presence of those lactones to interesting odorant zones, reminiscent of mint, detected in the studied wine. Although these p-menthane lactones may contribute individually to mint and coconut odors, sensory studies suggested for the first time that their combination at the levels found in the red wine studied resulted in a significant accentuation of freshness and mint notes.
Assuntos
Lactonas/análise , Mentol/análogos & derivados , Monoterpenos/análise , Vinho/análise , Cromatografia Gasosa-Espectrometria de Massas , Mentol/análise , Odorantes/análise , OlfatometriaRESUMO
Piperitone was recently identified in red Bordeaux wines, and this study was designed to further explore its contribution to wine aroma. Firstly, a geographical origin effect was detected within the Bordeaux region (left versus right banks of the Gironde estuary), with significantly higher mint aroma intensities and piperitone levels in wines from the left bank (Medoc appellations). Statistical analysis of chemical and sensory data highlighted a correlation with the proportion of Cabernet Sauvignon in the wine blends. Accordingly, it was suggested that these sensory and chemical differences may be of varietal origin. Secondly, the contribution of piperitone to minty aromas in the aging bouquet was confirmed by combining both sensory and chemical data from a wide range of red Bordeaux wines. Subsequent investigation of the enantiomeric distribution of piperitone found a significantly higher proportion of the (+)-(6S) enantiomeric form in wines displaying a strong aging bouquet.