Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Neuroimage ; 292: 120573, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521211

RESUMO

Overcoming sex bias in preclinical research requires not only including animals of both sexes in the experiments, but also developing proper tools to handle such data. Recent work revealed sensitivity of diffusion-weighted MRI to glia morphological changes in response to inflammatory stimuli, opening up exciting possibilities to characterize inflammation in a variety of preclinical models of pathologies, the great majority of them available in mice. However, there are limited resources dedicated to mouse imaging, like those required for the data processing and analysis. To fill this gap, we build a mouse MRI template of both structural and diffusion contrasts, with anatomical annotation according to the Allen Mouse Brain Atlas, the most detailed public resource for mouse brain investigation. To achieve a standardized resource, we use a large cohort of animals in vivo, and include animals of both sexes. To prove the utility of this resource to integrate imaging and molecular data, we demonstrate significant association between the mean diffusivity from MRI and gene expression-based glia density. To demonstrate the need of equitable sex representation, we compared across sexes the warp fields needed to match a male-based template, and our template built with both sexes. Then, we use both templates for analysing mice imaging data obtained in animals of different ages, demonstrating that using a male-based template creates spurious significant sex effects, not present otherwise. All in all, our MouseX DW-ALLEN Atlas will be a widely useful resource getting us one step closer to equitable healthcare.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Animais , Feminino , Masculino , Camundongos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Atlas como Assunto , Caracteres Sexuais , Neuroglia , Camundongos Endogâmicos C57BL
2.
Elife ; 132024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38192199

RESUMO

Axonal degeneration is a central pathological feature of multiple sclerosis and is closely associated with irreversible clinical disability. Current noninvasive methods to detect axonal damage in vivo are limited in their specificity and clinical applicability, and by the lack of proper validation. We aimed to validate an MRI framework based on multicompartment modeling of the diffusion signal (AxCaliber) in rats in the presence of axonal pathology, achieved through injection of a neurotoxin damaging the neuronal terminal of axons. We then applied the same MRI protocol to map axonal integrity in the brain of multiple sclerosis relapsing-remitting patients and age-matched healthy controls. AxCaliber is sensitive to acute axonal damage in rats, as demonstrated by a significant increase in the mean axonal caliber along the targeted tract, which correlated with neurofilament staining. Electron microscopy confirmed that increased mean axonal diameter is associated with acute axonal pathology. In humans with multiple sclerosis, we uncovered a diffuse increase in mean axonal caliber in most areas of the normal-appearing white matter, preferentially affecting patients with short disease duration. Our results demonstrate that MRI-based axonal diameter mapping is a sensitive and specific imaging biomarker that links noninvasive imaging contrasts with the underlying biological substrate, uncovering generalized axonal damage in multiple sclerosis as an early event.


Assuntos
Esclerose Múltipla , Humanos , Animais , Ratos , Esclerose Múltipla/diagnóstico por imagem , Axônios , Imageamento por Ressonância Magnética , Encéfalo , Difusão
3.
Psychiatry Clin Neurosci ; 78(3): 176-185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38085120

RESUMO

AIM: Alcohol use disorder (AUD) is the most prevalent form of addiction, with a great burden on society and limited treatment options. A recent clinical trial reported significant clinical benefits of deep transcranial magnetic stimulations (Deep TMS) targeting midline frontocortical areas. However, the underlying biological substrate remained elusive. Here, we report the effect of Deep TMS on the microstructure of white matter. METHODS: A total of 37 (14 females) AUD treatment-seeking patients were randomized to sham or active Deep TMS. Twenty (six females) age-matched healthy controls were included. White matter integrity was evaluated by fractional anisotropy (FA). Secondary measures included brain functional connectivity and self-reports of craving and drinking units in the 3 months of follow-up period. RESULTS: White matter integrity was compromised in patients with AUD relative to healthy controls, as reflected by the widespread reduction in FA. This alteration progressed during early abstinence (3 weeks) in the absence of Deep TMS. However, stimulation of midline frontocortical areas arrested the progression of FA changes in association with decreased craving and relapse scores. Reconstruction of axonal tracts from white-matter regions showing preserved FA values identified cortical regions in the posterior cingulate and dorsomedial prefrontal cortices where functional connectivity was persistently modulated. These effects were absent in the sham-stimulated group. CONCLUSIONS: By integrating brain structure and function to characterize the alcohol-dependent brain, this study provides mechanistic insights into the TMS effect, pointing to myelin plasticity as a possible mediator.


Assuntos
Alcoolismo , Substância Branca , Feminino , Humanos , Alcoolismo/terapia , Substância Branca/diagnóstico por imagem , Encéfalo , Etanol , Consumo de Bebidas Alcoólicas , Anisotropia
4.
Hum Brain Mapp ; 44(15): 5113-5124, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647214

RESUMO

Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) have been previously used to explore white matter related to human immunodeficiency virus (HIV) infection. While DTI and DKI suffer from low specificity, the Combined Hindered and Restricted Model of Diffusion (CHARMED) provides additional microstructural specificity. We used these three models to evaluate microstructural differences between 35 HIV-positive patients without neurological impairment and 20 healthy controls who underwent diffusion-weighted imaging using three b-values. While significant group effects were found in all diffusion metrics, CHARMED and DKI analyses uncovered wider involvement (80% vs. 20%) of all white matter tracts in HIV infection compared with DTI. In restricted fraction (FR) analysis, we found significant differences in the left corticospinal tract, middle cerebellar peduncle, right inferior cerebellar peduncle, right corticospinal tract, splenium of the corpus callosum, left superior cerebellar peduncle, left superior cerebellar peduncle, pontine crossing tract, left posterior limb of the internal capsule, and left/right medial lemniscus. These are involved in language, motor, equilibrium, behavior, and proprioception, supporting the functional integration that is frequently impaired in HIV-positivity. Additionally, we employed a machine learning algorithm (XGBoost) to discriminate HIV-positive patients from healthy controls using DTI and CHARMED metrics on an ROIwise basis, and unique contributions to this discrimination were examined using Shapley Explanation values. The CHARMED and DKI estimates produced the best performance. Our results suggest that biophysical multishell imaging, combining additional sensitivity and built-in specificity, provides further information about the brain microstructural changes in multimodal areas involved in attentive, emotional and memory networks often impaired in HIV patients.


Assuntos
Imagem de Tensor de Difusão , Infecções por HIV , Substância Branca , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Infecções por HIV/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
5.
Acta Neuropathol Commun ; 11(1): 101, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344865

RESUMO

INTRODUCTION: Alcohol dependence is characterized by a gradual reduction in cognitive control and inflexibility to contingency changes. The neuroadaptations underlying this aberrant behavior are poorly understood. Using an animal model of alcohol use disorders (AUD) and complementing diffusion-weighted (dw)-MRI with quantitative immunohistochemistry and electrophysiological recordings, we provide causal evidence that chronic intermittent alcohol exposure affects the microstructural integrity of the fimbria/fornix, decreasing myelin basic protein content, and reducing the effective communication from the hippocampus (HC) to the prefrontal cortex (PFC). Using a simple quantitative neural network model, we show how disturbed HC-PFC communication may impede the extinction of maladaptive memories, decreasing flexibility. Finally, combining dw-MRI and psychometric data in AUD patients, we discovered an association between the magnitude of microstructural alteration in the fimbria/fornix and the reduction in cognitive flexibility. Overall, these findings highlight the vulnerability of the fimbria/fornix microstructure in AUD and its potential contribution to alcohol pathophysiology. Fimbria vulnerability to alcohol underlies hippocampal-prefrontal cortex dysfunction and correlates with cognitive impairment.


Assuntos
Alcoolismo , Animais , Imagem de Difusão por Ressonância Magnética , Fórnice/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Etanol
6.
J Fungi (Basel) ; 8(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36012783

RESUMO

The yeast mitochondrial transport of GTP and GDP is mediated by Ggc1p, a member of the mitochondrial carrier family. The physiological role of Ggc1p in S. cerevisiae is probably to transport GTP into mitochondria in exchange for GDP generated in the matrix. ggc1Δ cells exhibit lower levels of GTP and increased levels of GDP in mitochondria, are unable to grow on nonfermentable substrates and lose mtDNA. Because in yeast, succinyl-CoA ligase produces ATP instead of GTP, and the mitochondrial nucleoside diphosphate kinase is localized in the intermembrane space, Ggc1p is the only supplier of mitochondrial GTP required for the maturation of proteins containing Fe-S clusters, such as aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. In this work, it was demonstrated that citrate is a regulator of purified and reconstituted Ggc1p by trans-activating unidirectional transport of GTP across the proteoliposomal membrane. It was also shown that the binding site of Ggc1p for citrate is different from the binding site for the substrate GTP. It is proposed that the citrate-induced GTP uniport (CIGU) mediated by Ggc1p is involved in the homeostasis of the guanine nucleotide pool in the mitochondrial matrix.

7.
Sci Adv ; 8(21): eabq2923, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622913

RESUMO

While glia are increasingly implicated in the pathophysiology of psychiatric and neurodegenerative disorders, available methods for imaging these cells in vivo involve either invasive procedures or positron emission tomography radiotracers, which afford low resolution and specificity. Here, we present a noninvasive diffusion-weighted magnetic resonance imaging (MRI) method to image changes in glia morphology. Using rat models of neuroinflammation, degeneration, and demyelination, we demonstrate that diffusion-weighted MRI carries a fingerprint of microglia and astrocyte activation and that specific signatures from each population can be quantified noninvasively. The method is sensitive to changes in glia morphology and proliferation, providing a quantitative account of neuroinflammation, regardless of the existence of a concomitant neuronal loss or demyelinating injury. We prove the translational value of the approach showing significant associations between MRI and histological microglia markers in humans. This framework holds the potential to transform basic and clinical research by clarifying the role of inflammation in health and disease.

8.
Sci Adv ; 6(26): eaba0154, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637601

RESUMO

Already moderate alcohol consumption has detrimental long-term effects on brain function. However, how alcohol produces its potent addictive effects despite being a weak reinforcer is a poorly understood conundrum that likely hampers the development of successful interventions to limit heavy drinking. In this translational study, we demonstrate widespread increased mean diffusivity in the brain gray matter of chronically drinking humans and rats. These alterations appear soon after drinking initiation in rats, persist into early abstinence in both species, and are associated with a robust decrease in extracellular space tortuosity explained by a microglial reaction. Mathematical modeling of the diffusivity changes unveils an increased spatial reach of extrasynaptically released transmitters like dopamine that may contribute to alcohol's progressively enhanced addictive potency.

9.
J Neurosci Methods ; 343: 108814, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569785

RESUMO

Preclinical MRI approaches constitute a key tool to study a wide variety of neurological and psychiatric illnesses, allowing a more direct investigation of the disorder substrate and, at the same time, the possibility of back-translating such findings to human subjects. However, the lack of consensus on the optimal experimental scheme used to acquire the data has led to relatively high heterogeneity in the choice of protocols, which can potentially impact the comparison between results obtained by different groups, even using the same animal model. This is especially true for diffusion-weighted MRI data, where certain experimental choices can impact not only on the accuracy and precision of the extracted biomarkers, but also on their biological meaning. With this in mind, we extensively examined preclinical imaging studies that used diffusion-weighted MRI to investigate neurodegenerative, neurodevelopmental and psychiatric disorders in rodent models. In this review, we discuss the main findings for each preclinical model, with a special focus on the analysis and comparison of the different acquisition strategies used across studies and their impact on the heterogeneity of the findings.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Animais , Biomarcadores , Modelos Animais de Doenças , Roedores
10.
Ann Clin Transl Neurol ; 7(4): 543-553, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32255566

RESUMO

OBJECTIVE: The objective of this study was to determine the ability of 7T-MRI for characterizing brain tissue integrity in early relapsing-remitting MS patients compared to conventional 3T-MRI and to investigate whether 7T-MRI improves the performance for detecting cortical gray matter neurodegeneration and its associated network reorganization dynamics. METHODS: Seven early relapsing-remitting MS patients and seven healthy individuals received MRI at 7T and 3T, whereas 30 and 40 healthy controls underwent separate 3T- and 7T-MRI sessions, respectively. Surface-based cortical thickness (CT) and gray-to-white contrast (GWc) measures were used to model morphometric networks, analyzed with graph theory by means of modularity, clustering coefficient, path length, and small-worldness. RESULTS: 7T-MRI had lower CT and higher GWc compared to 3T-MRI in MS. CT and GWc measures robustly differentiated MS from controls at 3T-MRI. 7T- and 3T-MRI showed high regional correspondence for CT (r = 0.72, P = 2e-78) and GWc (r = 0.83, P = 5.5e-121) in MS patients. MS CT and GWc morphometric networks at 7T-MRI showed higher modularity, clustering coefficient, and small-worldness than 3T, also compared to controls. INTERPRETATION: 7T-MRI allows to more precisely quantify morphometric alterations across the cortical mantle and captures more sensitively MS-related network reorganization. Our findings open new avenues to design more accurate studies quantifying brain tissue loss and test treatment effects on tissue repair.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Neurobiol Aging ; 86: 191-200, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31902522

RESUMO

During aging, human white matter (WM) is subject to dynamic structural changes which have a deep impact on healthy and pathological evolution of the brain through the lifespan; characterizing this pattern is of key importance for understanding brain development, maturation, and aging as well as for studying its pathological alterations. Diffusion magnetic resonance imaging (MRI) can provide a quantitative assessment of the white-matter microstructural organization that characterizes these trajectories. Here, we use both conventional and advanced diffusion MRI in a cohort of 91 individuals (age range: 13-62 years) to study region- and sex-specific features of WM microstructural integrity in healthy aging. We focus on the age at which microstructural imaging parameters invert their development trend as the time point which marks the onset of microstructural decline in WM. Importantly, our results indicate that age-related brain changes begin earlier in males than females and affect more frontal regions-in accordance with evolutionary theories and numerous evidences across non-MRI domains. Advanced diffusion MRI reveals age-related WM modification patterns which cannot be detected using conventional diffusion tensor imaging.


Assuntos
Imagem de Tensor de Difusão/métodos , Envelhecimento Saudável/patologia , Caracteres Sexuais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adolescente , Adulto , Idade de Início , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/patologia , Adulto Jovem
12.
ACS Chem Neurosci ; 10(10): 4187-4189, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31513372

RESUMO

While alcohol's detrimental effects on the brain are widely acknowledged, diagnostic markers for detection and monitoring alcohol-induced brain damage are lacking. A recent study showed that diffusion tensor imaging can be used to monitor this damage and characterized the progression of the observed changes into early abstinence. Here, we discuss the main findings of that study and highlight current technical limitations which, once addressed, can pave the way to the development of new powerful diagnostic markers for alcohol-induced brain damage.


Assuntos
Encefalopatias/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Etanol/efeitos adversos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encefalopatias/induzido quimicamente , Encefalopatias/patologia , Humanos
13.
JAMA Psychiatry ; 76(7): 749-758, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942831

RESUMO

Importance: Although the detrimental effects of alcohol on the brain are widely acknowledged, observed structural changes are highly heterogeneous, and diagnostic markers for characterizing alcohol-induced brain damage, especially in early abstinence, are lacking. This heterogeneity, likely contributed to by comorbidity factors in patients with alcohol use disorder (AUD), challenges a direct link of brain alterations to the pathophysiology of alcohol misuse. Translational studies in animal models may help bridge this causal gap. Objective: To compare microstructural properties extracted using advanced diffusion tensor imaging (DTI) in the brains of patients with AUD and a well-controlled rat model of excessive alcohol consumption and monitor the progression of these properties during early abstinence. Design, Setting, and Participants: This prospective observational study included 2 cohorts of hospitalized patients with AUD (n = 91) and Marchigian Sardinian alcohol-preferring (msP) rats (n = 27). In humans cross-sectional comparison were performed with control participants (healthy men [n = 36]) and longitudinal comparisons between different points after alcohol withdrawal. In rats, longitudinal comparisons were performed in alcohol-exposed (n = 27) and alcohol-naive msP rats (n = 9). Human data were collected from March 7, 2013, to August 3, 2016, and analyzed from June 14, 2017, to May 31, 2018; rat data were collected from January 15, 2017, to May 12, 2017, and analyzed from October 11, 2017, to May 28, 2018. Main Outcomes and Measures: Fractional anisotropy and other DTI measures of white matter properties after long-term alcohol exposure and during early abstinence in both species and clinical and demographic variables and time of abstinence after discharge from hospital in patients. Results: The analysis included 91 men with AUD (mean [SD] age, 46.1 [9.6] years) and 27 male rats in the AUD groups and 36 male controls (mean [SD] age, 41.7 [9.3] years) and 9 male control rats. Comparable DTI alterations were found between alcohol and control groups in both species, with a preferential involvement of the corpus callosum (fractional anisotropy Cohen d = -0.84 [P < .01] corrected in humans and Cohen d = -1.17 [P < .001] corrected in rats) and the fornix/fimbria (fractional anisotropy Cohen d = -0.92 [P < .001] corrected in humans and d = -1.24 [P < .001] corrected in rats). Changes in DTI were associated with preadmission consumption patterns in patients and progress in humans and rats during 6 weeks of abstinence. Mathematical modeling shows this process to be compatible with a sustained demyelination and/or a glial reaction. Conclusions and Relevance: Using a translational DTI approach, comparable white matter alterations were found in patients with AUD and rats with long-term alcohol consumption. In humans and rats, a progression of DTI alterations into early abstinence (2-6 weeks) suggests an underlying process that evolves soon after cessation of alcohol use.


Assuntos
Abstinência de Álcool , Consumo de Bebidas Alcoólicas , Alcoolismo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Animais , Estudos Transversais , Imagem de Tensor de Difusão , Humanos , Masculino , Pessoa de Meia-Idade , Ratos
14.
Neuroscience ; 403: 27-34, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708049

RESUMO

In multiple sclerosis (MS), it would be of clinical value to be able to track the progression of axonal pathology, especially before the manifestation of clinical disability. However, non-invasive evaluation of short-term longitudinal progression of white matter integrity is challenging. This study aims at assessing longitudinal changes in the restricted (i.e. intracellular) diffusion signal fraction (FR) in early-stage MS by using ultra-high gradient strength multi-shell diffusion magnetic resonance imaging. In 11 early MS subjects (disease duration ≤5 years), FR was obtained at two timepoints (one year apart) through the Composite Hindered and Restricted Model of Diffusion, along with conventional Diffusion Tensor Imaging metrics. At follow-up, no statistically significant change was detected in clinical variables, while all imaging metrics showed statistically significant longitudinal changes (p < 0.01, corrected for multiple comparisons) in widespread regions in normal-appearing white matter (NAWM). The most extensive longitudinal changes were observed in FR, including areas known to include a large fraction of crossing fibers. Furthermore, FR was also the only metric showing significant longitudinal changes in lesions that were present at both time points (p = 0.007), with no significant differences found for conventional diffusion metrics. Finally, FR was the only diffusion metric (as compared to Diffusion Tensor Imaging) that revealed pre-lesional changes already present at baseline. Taken together, our data provide evidence for progressive microstructural damage in the NAWM of early MS cases detectable already at 1-year follow-up. Our study highlights the value of multi-shell diffusion imaging for sensitive tracking of disease evolution in MS before any clinical changes are observed. This article is part of a Special Issue entitled: SI: MRI and Neuroinflammation.


Assuntos
Imagem de Difusão por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Adulto , Fatores Etários , Axônios , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Progressão da Doença , Feminino , Seguimentos , Humanos , Interpretação de Imagem Assistida por Computador , Estudos Longitudinais , Masculino , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
15.
Neuroimage Clin ; 22: 101699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30739842

RESUMO

Irreversible white matter (WM) damage, including severe demyelination and axonal loss, is a main determinant of long-term disability in multiple sclerosis (MS). Non-invasive detection of changes in microstructural WM integrity in the disease is challenging since commonly used imaging metrics lack the necessary sensitivity, especially in the early phase of the disease. This study aims at assessing microstructural WM abnormalities in early-stage MS by using ultra-high gradient strength multi-shell diffusion MRI and the restricted signal fraction (FR) from the Composite Hindered and Restricted Model of Diffusion (CHARMED), a metric sensitive to the volume fraction of axons. In 22 early MS subjects (disease duration ≤5 years) and 15 age-matched healthy controls, restricted fraction estimates were obtained through the CHARMED model along with conventional Diffusion Tensor Imaging (DTI) metrics. All imaging parameters were compared cross-sectionally between the MS subjects and controls both in WM lesions and normal-appearing white matter (NAWM). We found a significant reduction in FR focally in WM lesions and widespread in the NAWM in MS patients relative to controls (corrected p < .05). Signal fraction changes in NAWM were not driven by perilesional tissue, nor were they influenced by proximity to the ventricles, challenging the hypothesis of an outside-in pathological process driven by CSF-mediated immune cytotoxic factors. No significant differences were found in conventional DTI parameters. In a cross-validated classification task, FR showed the largest effect size and outperformed all other diffusion imaging metrics in discerning lesions from contralateral NAWM. Taken together, our data provide evidence for the presence of widespread microstructural changes in the NAWM in early MS stages that are, at least in part, unrelated to focal demyelinating lesions. Interestingly, these pathological changes were not yet detectable by conventional diffusion imaging at this early disease stage, highlighting the sensitivity and value of multi-shell diffusion imaging for better characterizing axonal microstructure in MS.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Neuroimagem/métodos , Substância Branca/patologia , Adulto , Axônios/patologia , Feminino , Humanos , Masculino , Esclerose Múltipla/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
17.
Neuroscience ; 403: 145-149, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237568

RESUMO

The gut-brain axis communicates the brain with the gut microbiota, a bidirectional conduit that has received increasing attention in recent years thanks to its emerging role in brain development and function. Alterations in microbiota composition have been associated to neurological and psychiatric disorders, and several studies suggest that the immune system plays a fundamental role in the gut-brain interaction. Recent advances in brain imaging and in microbiome sequencing have generated a large amount of information, yet the data from both these sources need to be combined efficiently to extract biological meaning, and any diagnostic and/or prognostic benefit from these tools. In addition, the causal nature of the gut-brain interaction remains to be fully established, and preclinical findings translated to humans. In this "Perspective" article, we discuss recent efforts to combine data on the gut microbiota with the features that can be obtained from the conversion of brain images into mineable data. The subsequent analysis of these data for diagnostic and prognostic purposes is an approach we call radiomicrobiomics and it holds tremendous potential to enhance our understanding of this fascinating connection.


Assuntos
Encéfalo/diagnóstico por imagem , Biologia Computacional/métodos , Microbioma Gastrointestinal , Animais , Big Data , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
18.
Neuroscience ; 403: 17-26, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631021

RESUMO

The recent introduction of advanced magnetic resonance (MR) imaging techniques to characterize focal and global degeneration in multiple sclerosis (MS), like the Composite Hindered and Restricted Model of Diffusion, or CHARMED, diffusional kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI) made available new tools to image axonal pathology non-invasively in vivo. These methods already showed greater sensitivity and specificity compared to conventional diffusion tensor-based metrics (e.g., fractional anisotropy), overcoming some of its limitations. While previous studies uncovered global and focal axonal degeneration in MS patients compared to healthy controls, here our aim is to investigate and compare different diffusion MRI acquisition protocols in their ability to highlight microstructural differences between MS and control tissue over several much used models. For comparison, we contrasted the ability of fractional anisotropy measurements to uncover differences between lesion, normal-appearing white matter (WM), gray matter and healthy tissue under the same imaging protocols. We show that: (1) focal and diffuse differences in several microstructural parameters are observed under clinical settings; (2) advanced models (CHARMED, DKI and NODDI) have increased specificity and sensitivity to neurodegeneration when compared to fractional anisotropy measurements; and (3) both high (3 T) and ultra-high fields (7 T) are viable options for imaging tissue change in MS lesions and normal appearing WM, while higher b-values are less beneficial under the tested short-time (10 min acquisition) conditions.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Adulto , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/instrumentação , Humanos , Interpretação de Imagem Assistida por Computador , Esclerose Múltipla/terapia , Degeneração Neural/diagnóstico por imagem , Projetos de Pesquisa , Sensibilidade e Especificidade , Fatores de Tempo
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 204-207, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31945878

RESUMO

Traditional techniques based on diffusion MR imaging suffer from extremely low specificity in separating disease-related alterations in white matter microstructure, which can involve multiple phenomena including axonal loss, demyelination and changes in axonal size. Multi-shell diffusion MRI is able to greatly increase specificity by concomitantly exploring multiple diffusion timescales. If multi-shell acquisition is combined with an exploration of different diffusion times, diffusion data allows the estimation of sophisticated compartmental models, which provide greatly enhanced specificity to the presence of different tissue sub-compartments, as well as estimates of intra-voxel axonal diameter distributions. In this paper, we apply a multiple-b-value, high angular resolution multi-shell diffusion MRI protocol with varying diffusion times to a cohort of multiple sclerosis (MS) patients and compare them to a population of healthy controls. By fitting the AxCaliber model, we are able to extract indices for axonal diameter across the whole brain. We show that MS is associated with widespread increases of axonal diameter and that our axonal diameter estimation provides the highest discrimination power for local alterations in normal-appearing white matter in MS compared to controls. AxCaliber has the potential to disentangle microstructural alterations in MS and holds great promises to become a sensitive and specific non-invasive biomarker of irreversible disease progression.


Assuntos
Esclerose Múltipla , Axônios , Encéfalo , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Humanos
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3024-3027, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060535

RESUMO

Conventional diffusion-weighted MR imaging techniques provide limited specificity in disentangling disease-related microstructural alterations involving changes in both axonal density and myelination. By simultaneously probing multiple diffusion regimens, multi-shell diffusion MRI is capable of increasing specificity to different tissue sub-compartments and hence separate different contributions to changes in diffusion-weighted signal attenuation. Advanced multi-shell diffusion models impose significant requirements on the amount of diffusion weighting (i.e. gradient coil performance) and angular resolution (i.e. in-scanner subject time), which commonly limits their applicability in a clinical setting. In this paper, we apply a high-b-value, high angular resolution multi-shell diffusion MRI protocol to a population of early multiple sclerosis (MS) patients and healthy controls. Through the Composite Hindered and Restricted Model of Diffusion (CHARMED) model, we extract indices for axonal density as well as parameters sensitive to myelin. We demonstrate increased sensitivity to microstructural changes in normal appearing white matter and in lesions in MS as compared to traditional models like DTI. These changes appear to be predominantly in axonal density, pointing towards the existence of axonal damage mechanisms in early MS.


Assuntos
Substância Branca , Axônios , Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Esclerose Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA