Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sci Rep ; 14(1): 6600, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504117

RESUMO

Grape breeding programs are mostly focused on developing new varieties with high production volume, sugar contents, and phenolic compound diversity combined with resistance and tolerance to the main pathogens under culture and adverse environmental conditions. The 'Niagara' variety (Vitis labrusca × Vitis vinifera) is one of the most widely produced and commercialized table grapes in Brazil. In this work, we selected three Niagara somatic variants with contrasting berry phenotypes and performed morphological and transcriptomic analyses of their berries. Histological sections of the berries were also performed to understand anatomical and chemical composition differences of the berry skin between the genotypes. An RNA-Seq pipeline was implemented, followed by global coexpression network modeling. 'Niagara Steck', an intensified russet mutant with the most extreme phenotype, showed the largest difference in expression and showed selection of coexpressed network modules involved in the development of its russet-like characteristics. Enrichment analysis of differently expressed genes and hub network modules revealed differences in transcription regulation, auxin signaling and cell wall and plasmatic membrane biogenesis. Cutin- and suberin-related genes were also differently expressed, supporting the anatomical differences observed with microscopy.


Assuntos
Vitis , Vitis/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Frutas/metabolismo , Brasil
2.
Front Plant Sci ; 14: 1303417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148869

RESUMO

Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.

3.
Theor Appl Genet ; 136(11): 238, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919432

RESUMO

KEY MESSAGE: We present the highest-density genetic map for the hexaploid Urochloa humidicola. SNP markers expose genetic organization, reproduction, and species origin, aiding polyploid and tropical forage research. Tropical forage grasses are an important food source for animal feeding, with Urochloa humidicola, also known as Koronivia grass, being one of the main pasture grasses for poorly drained soils in the tropics. However, genetic and genomic resources for this species are lacking due to its genomic complexity, including high heterozygosity, evidence of segmental allopolyploidy, and reproduction by apomixis. These complexities hinder the application of marker-assisted selection (MAS) in breeding programs. Here, we developed the highest-density linkage map currently available for the hexaploid tropical forage grass U. humidicola. This map was constructed using a biparental F1 population generated from a cross between the female parent H031 (CIAT 26146), the only known sexual genotype for the species, and the apomictic male parent H016 (BRS cv. Tupi). The linkage analysis included 4873 single nucleotide polymorphism (SNP) markers with allele dosage information. It allowed mapping of the ASGR locus and apospory phenotype to linkage group 3, in a region syntenic with chromosome 3 of Urochloa ruziziensis and chromosome 1 of Setaria italica. We also identified hexaploid haplotypes for all individuals, assessed the meiotic configuration, and estimated the level of preferential pairing in parents during the meiotic process, which revealed the autopolyploid origin of sexual H031 in contrast to apomictic H016, which presented allopolyploid behavior in preferential pairing analysis. These results provide new information regarding the genetic organization, mode of reproduction, and allopolyploid origin of U. humidicola, potential SNPs markers associated with apomixis for MAS and resources for research on polyploids and tropical forage grasses.


Assuntos
Apomixia , Humanos , Feminino , Masculino , Apomixia/genética , Melhoramento Vegetal , Poaceae/genética , Poliploidia , Genômica
4.
Mol Genet Genomics ; 298(3): 735-754, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37017807

RESUMO

Trichoderma atroviride and Trichoderma harzianum are widely used as commercial biocontrol agents against plant diseases. Recently, T. harzianum IOC-3844 (Th3844) and T. harzianum CBMAI-0179 (Th0179) demonstrated great potential in the enzymatic conversion of lignocellulose into fermentable sugars. Herein, we performed whole-genome sequencing and assembly of the Th3844 and Th0179 strains. To assess the genetic diversity within the genus Trichoderma, the results of both strains were compared with strains of T. atroviride CBMAI-00020 (Ta0020) and T. reesei CBMAI-0711 (Tr0711). The sequencing coverage value of all genomes evaluated in this study was higher than that of previously reported genomes for the same species of Trichoderma. The resulting assembly revealed total lengths of 40 Mb (Th3844), 39 Mb (Th0179), 36 Mb (Ta0020), and 32 Mb (Tr0711). A genome-wide phylogenetic analysis provided details on the relationships of the newly sequenced species with other Trichoderma species. Structural variants revealed genomic rearrangements among Th3844, Th0179, Ta0020, and Tr0711 relative to the T. reesei QM6a reference genome and showed the functional effects of such variants. In conclusion, the findings presented herein allow the visualization of genetic diversity in the evaluated strains and offer opportunities to explore such fungal genomes in future biotechnological and industrial applications.


Assuntos
Trichoderma , Filogenia , Trichoderma/genética , Genômica
5.
Methods Mol Biol ; 2638: 93-113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781637

RESUMO

Molecular marker discovery and genotyping are major challenges in polyploid breeding programs incorporating molecular biology tools. In this context, this work describes a method for single nucleotide polymorphism (SNP) genotyping in polyploid crops using matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry, the MassARRAY System.


Assuntos
Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Genótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Front Plant Sci ; 14: 1068202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824205

RESUMO

The protein kinase (PK) superfamily constitutes one of the largest and most conserved protein families in eukaryotic genomes, comprising core components of signaling pathways in cell regulation. Despite its remarkable relevance, only a few kinase families have been studied in Hevea brasiliensis. A comprehensive characterization and global expression analysis of the PK superfamily, however, is currently lacking. In this study, with the aim of providing novel inferences about the mechanisms associated with the stress response developed by PKs and retained throughout evolution, we identified and characterized the entire set of PKs, also known as the kinome, present in the Hevea genome. Different RNA-sequencing datasets were employed to identify tissue-specific expression patterns and potential correspondences between different rubber tree genotypes. In addition, coexpression networks under several abiotic stress conditions, such as cold, drought and latex overexploitation, were employed to elucidate associations between families and tissues/stresses. A total of 1,809 PK genes were identified using the current reference genome assembly at the scaffold level, and 1,379 PK genes were identified using the latest chromosome-level assembly and combined into a single set of 2,842 PKs. These proteins were further classified into 20 different groups and 122 families, exhibiting high compositional similarities among family members and with two phylogenetically close species Manihot esculenta and Ricinus communis. Through the joint investigation of tandemly duplicated kinases, transposable elements, gene expression patterns, and coexpression events, we provided insights into the understanding of the cell regulation mechanisms in response to several conditions, which can often lead to a significant reduction in rubber yield.

7.
Gene ; 855: 147127, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563714

RESUMO

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core regulator of cellular signaling. Even considering this substantial importance, the kinome of common bean (Phaseolus vulgaris) has not been profiled yet. Here, we identified and characterised the complete set of kinases of common bean, performing an in-depth investigation with phylogenetic analyses and measurements of gene distribution, structural organization, protein properties, and expression patterns over a large set of RNA-Sequencing data. Being composed of 1,203 PKs distributed across all P. vulgaris chromosomes, this set represents 3.25% of all predicted proteins for the species. These PKs could be classified into 20 groups and 119 subfamilies, with a more pronounced abundance of subfamilies belonging to the receptor-like kinase (RLK)-Pelle group. In addition to provide a vast and rich reservoir of data, our study supplied insights into the compositional similarities between PK subfamilies, their evolutionary divergences, highly variable functional profile, structural diversity, and expression patterns, modeled with coexpression networks for investigating putative interactions associated with stress response.


Assuntos
Phaseolus , Phaseolus/genética , Phaseolus/metabolismo , Filogenia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Família Multigênica , Plantas/genética , Proteínas de Plantas/metabolismo
8.
Sci Rep ; 12(1): 18023, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289298

RESUMO

Rubber tree (Hevea brasiliensis) is the main feedstock for commercial rubber; however, its long vegetative cycle has hindered the development of more productive varieties via breeding programs. With the availability of H. brasiliensis genomic data, several linkage maps with associated quantitative trait loci have been constructed and suggested as a tool for marker-assisted selection. Nonetheless, novel genomic strategies are still needed, and genomic selection (GS) may facilitate rubber tree breeding programs aimed at reducing the required cycles for performance assessment. Even though such a methodology has already been shown to be a promising tool for rubber tree breeding, increased model predictive capabilities and practical application are still needed. Here, we developed a novel machine learning-based approach for predicting rubber tree stem circumference based on molecular markers. Through a divide-and-conquer strategy, we propose a neural network prediction system with two stages: (1) subpopulation prediction and (2) phenotype estimation. This approach yielded higher accuracies than traditional statistical models in a single-environment scenario. By delivering large accuracy improvements, our methodology represents a powerful tool for use in Hevea GS strategies. Therefore, the incorporation of machine learning techniques into rubber tree GS represents an opportunity to build more robust models and optimize Hevea breeding programs.


Assuntos
Hevea , Hevea/genética , Hevea/metabolismo , Borracha/metabolismo , Melhoramento Vegetal , Genômica , Aprendizado de Máquina
9.
Sci Rep ; 12(1): 12499, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864135

RESUMO

Poaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in different cross-validation scenarios. By combining classification and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.


Assuntos
Poaceae , Saccharum , Genômica/métodos , Fenótipo , Melhoramento Vegetal , Poaceae/genética , Poliploidia , Saccharum/genética
10.
Front Plant Sci ; 13: 923069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845637

RESUMO

Orphan genes (OGs) are protein-coding genes that are restricted to particular clades or species and lack homology with genes from other organisms, making their biological functions difficult to predict. OGs can rapidly originate and become functional; consequently, they may support rapid adaptation to environmental changes. Extensive spread of mobile elements and whole-genome duplication occurred in the Saccharum group, which may have contributed to the origin and diversification of OGs in the sugarcane genome. Here, we identified and characterized OGs in sugarcane, examined their expression profiles across tissues and genotypes, and investigated their regulation under varying conditions. We identified 319 OGs in the Saccharum spontaneum genome without detected homology to protein-coding genes in green plants, except those belonging to Saccharinae. Transcriptomic analysis revealed 288 sugarcane OGs with detectable expression levels in at least one tissue or genotype. We observed similar expression patterns of OGs in sugarcane genotypes originating from the closest geographical locations. We also observed tissue-specific expression of some OGs, possibly indicating a complex regulatory process for maintaining diverse functional activity of these genes across sugarcane tissues and genotypes. Sixty-six OGs were differentially expressed under stress conditions, especially cold and osmotic stresses. Gene co-expression network and functional enrichment analyses suggested that sugarcane OGs are involved in several biological mechanisms, including stimulus response and defence mechanisms. These findings provide a valuable genomic resource for sugarcane researchers, especially those interested in selecting stress-responsive genes.

11.
Front Genet ; 13: 807243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281818

RESUMO

Trichoderma harzianum, whose gene expression is tightly controlled by the transcription factors (TFs) XYR1 and CRE1, is a potential candidate for hydrolytic enzyme production. Here, we performed a network analysis of T. harzianum IOC-3844 and T. harzianum CBMAI-0179 to explore how the regulation of these TFs varies between these strains. In addition, we explored the evolutionary relationships of XYR1 and CRE1 protein sequences among Trichoderma spp. The results of the T. harzianum strains were compared with those of Trichoderma atroviride CBMAI-0020, a mycoparasitic species. Although transcripts encoding carbohydrate-active enzymes (CAZymes), TFs, transporters, and proteins with unknown functions were coexpressed with cre1 or xyr1, other proteins indirectly related to cellulose degradation were identified. The enriched GO terms describing the transcripts of these groups differed across all strains, and several metabolic pathways with high similarity between both regulators but strain-specific differences were identified. In addition, the CRE1 and XYR1 subnetworks presented different topology profiles in each strain, likely indicating differences in the influences of these regulators according to the fungi. The hubs of the cre1 and xyr1 groups included transcripts not yet characterized or described as being related to cellulose degradation. The first-neighbor analyses confirmed the results of the profile of the coexpressed transcripts in cre1 and xyr1. The analyses of the shortest paths revealed that CAZymes upregulated under cellulose degradation conditions are most closely related to both regulators, and new targets between such signaling pathways were discovered. Although the evaluated T. harzianum strains are phylogenetically close and their amino acid sequences related to XYR1 and CRE1 are very similar, the set of transcripts related to xyr1 and cre1 differed, suggesting that each T. harzianum strain used a specific regulation strategy for cellulose degradation. More interestingly, our findings may suggest that XYR1 and CRE1 indirectly regulate genes encoding proteins related to cellulose degradation in the evaluated T. harzianum strains. An improved understanding of the basic biology of fungi during the cellulose degradation process can contribute to the use of their enzymes in several biotechnological applications and pave the way for further studies on the differences across strains of the same species.

12.
Sci Rep ; 12(1): 1268, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075210

RESUMO

Knowledge about genetic diversity is essential to promote effective use and conservation of crops, because it enables farmers to adapt their crops to specific needs and is the raw material for breeding. Manioc (Manihot esculenta ssp. esculenta) is one of the world's major food crops and has the potential to help achieve food security in the context of on-going climate changes. We evaluated single nucleotide polymorphisms in traditional Brazilian manioc varieties conserved in the gene bank of the Luiz de Queiroz College of Agriculture, University of São Paulo. We assessed genome-wide diversity and identified selective signatures contrasting varieties from different biomes with samples of manioc's wild ancestor M. esculenta ssp. flabellifolia. We identified signatures of selection putatively associated with resistance genes, plant development and response to abiotic stresses that might have been important for the crop's domestication and diversification resulting from cultivation in different environments. Additionally, high neutral genetic diversity within groups of varieties from different biomes and low genetic divergence among biomes reflect the complexity of manioc's evolutionary dynamics under traditional cultivation. Our results exemplify how smallholder practices contribute to conserve manioc's genetic resources, maintaining variation of potential adaptive significance and high levels of neutral genetic diversity.


Assuntos
Genoma de Planta , Manihot/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Brasil , Domesticação , Ecossistema
13.
Front Plant Sci ; 12: 736797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966397

RESUMO

Multiple genes in sugarcane control sucrose accumulation and the biosynthesis of cell wall components; however, it is unclear how these genes are expressed in its apical culms. To better understand this process, we sequenced mRNA from +1 stem internodes collected from four genotypes with different concentrations of soluble solids. Culms were collected at four different time points, ranging from six to 12-month-old plants. Here we show differentially expressed genes related to sucrose metabolism and cell wall biosynthesis, including genes encoding invertases, sucrose synthase and cellulose synthase. Our results showed increased expression of invertases in IN84-58, the genotype with lower sugar and higher fiber content, as well as delayed expression of secondary cell wall-related cellulose synthase for the other genotypes. Interestingly, genes involved with hormone metabolism were differentially expressed across time points in the three genotypes with higher soluble solids content. A similar result was observed for genes controlling maturation and transition to reproductive stages, possibly a result of selection against flowering in sugarcane breeding programs. These results indicate that carbon partitioning in apical culms of contrasting genotypes is mainly associated with differential cell wall biosynthesis, and may include early modifications for subsequent sucrose accumulation. Co-expression network analysis identified transcription factors related to growth and development, showing a probable time shift for carbon partitioning occurred in 10-month-old plants.

14.
Front Plant Sci ; 12: 770461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966402

RESUMO

Pastures based on perennial monocotyledonous plants are the principal source of nutrition for ruminant livestock in tropical and subtropical areas across the globe. The Urochloa genus comprises important species used in pastures, and these mainly include Urochloa brizantha, Urochloa decumbens, Urochloa humidicola, and Urochloa ruziziensis. Despite their economic relevance, there is an absence of genomic-level information for these species, and this lack is mainly due to genomic complexity, including polyploidy, high heterozygosity, and genomes with a high repeat content, which hinders advances in molecular approaches to genetic improvement. Next-generation sequencing techniques have enabled the recent release of reference genomes, genetic linkage maps, and transcriptome sequences, and this information helps improve our understanding of the genetic architecture and molecular mechanisms involved in relevant traits, such as the apomictic reproductive mode. However, more concerted research efforts are still needed to characterize germplasm resources and identify molecular markers and genes associated with target traits. In addition, the implementation of genomic selection and gene editing is needed to reduce the breeding time and expenditure. In this review, we highlight the importance and characteristics of the four main species of Urochloa used in pastures and discuss the current findings from genetic and genomic studies and research gaps that should be addressed in future research.

15.
Front Plant Sci ; 12: 737919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745171

RESUMO

Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.

16.
Sci Rep ; 11(1): 15730, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344928

RESUMO

Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.


Assuntos
Resistência à Doença/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Luteoviridae/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Genótipo , Filogenia , Melhoramento Vegetal , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Saccharum/crescimento & desenvolvimento , Saccharum/virologia
17.
Front Plant Sci ; 12: 668623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305969

RESUMO

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and the core regulator of cellular signaling. Despite this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here, we identified and profiled the complete kinomes of the polyploid Saccharum spontaneum (Ssp) and Sorghum bicolor (Sbi), a close diploid relative. The Sbi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs when disregarding duplications and allelic copies, and these were related to 1,345 representative gene models. The Ssp and Sbi PKs were grouped into 20 groups and 120 subfamilies and exhibited high compositional similarities and evolutionary divergences. By utilizing the collinearity between the species, this study offers insights into Sbi and Ssp speciation, PK differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq and identified significant similarities between Sbi and Ssp. Moreover, coexpression networks allowed inference of a core structure of kinase interactions with specific key elements. This study provides the first categorization of the allelic specificity of a kinome and offers a wide reservoir of molecular and genetic information, thereby enhancing the understanding of Sbi and Ssp PK evolutionary history.

18.
Sci Rep ; 11(1): 10961, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040092

RESUMO

Trichoderma genus fungi present great potential for the production of carbohydrate-active enzymes (CAZYmes), including glycoside hydrolase (GH) family members. From a renewability perspective, CAZYmes can be biotechnologically exploited to convert plant biomass into free sugars for the production of advanced biofuels and other high-value chemicals. GH54 is an attractive enzyme family for biotechnological applications because many GH54 enzymes are bifunctional. Thus, GH54 enzymes are interesting targets in the search for new enzymes for use in industrial processes such as plant biomass conversion. Herein, a novel metal-dependent GH54 arabinofuranosidase (ThABF) from the cellulolytic fungus Trichoderma harzianum was identified and biochemically characterized. Initial in silico searches were performed to identify the GH54 sequence. Next, the gene was cloned and heterologously overexpressed in Escherichia coli. The recombinant protein was purified, and the enzyme's biochemical and biophysical properties were assessed. GH54 members show wide functional diversity and specifically remove plant cell substitutions including arabinose and galactose in the presence of a metallic cofactor. Plant cell wall substitution has a major impact on lignocellulosic substrate conversion into high-value chemicals. These results expand the known functional diversity of the GH54 family, showing the potential of a novel arabinofuranosidase for plant biomass degradation.


Assuntos
Cátions Bivalentes/química , Proteínas Fúngicas/isolamento & purificação , Glicosídeo Hidrolases/isolamento & purificação , Hypocreales/enzimologia , Família Multigênica , Sequência de Aminoácidos , Sequência de Bases , Biodegradação Ambiental , Simulação por Computador , Sequência Consenso , Mineração de Dados , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Hypocreales/genética , Modelos Moleculares , Filogenia , Polissacarídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Açúcares/metabolismo , Temperatura
19.
J Biotechnol ; 334: 1-10, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33992696

RESUMO

Bioprospecting genes and proteins related to plant biomass degradation is an attractive approach for the identification of target genes for biotechnological purposes, especially those with potential applications in the biorefinery industry that can enhance second-generation ethanol production technology. Trichoderma harzianum is a potential candidate for cellulolytic enzyme prospection and production. Herein, the enzymatic activities, transcriptome, exoproteome, and coexpression networks of the T. harzianum strain CBMAI-0179 were examined under biomass degradation conditions. We identified differentially expressed genes (DEGs) and carbohydrate-active enzyme (CAZyme) genes related to plant biomass degradation and compared them with those of strains from congeneric species (T. harzianum IOC-3844 and T. atroviride CBMAI-0020). T. harzianum CBMAI-0179 harbors strain- and treatment-specific CAZyme genes and transcription factors. We detected important proteins related to biomass degradation, including ß-glucosidases, endoglucanases, cellobiohydrolases, lytic polysaccharide monooxygenases, endo-1,4-ß-xylanases and ß-mannanases. Based on coexpression networks, an enriched cluster with degradative enzymes was described, and the subnetwork of CAZymes revealed strong correlations among important secreted proteins and differentially expressed CAZyme genes. Our results provide valuable information for future studies on the genetic regulation of plant cell wall-degrading enzymes. This knowledge can be exploited for the improvement of enzymatic reactions in biomass degradation for bioethanol production.


Assuntos
Trichoderma , Metabolismo dos Carboidratos , Celulose/metabolismo , Perfilação da Expressão Gênica , Hypocreales , Trichoderma/genética , Trichoderma/metabolismo
20.
Front Plant Sci ; 12: 768589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992619

RESUMO

Hevea brasiliensis (rubber tree) is a large tree species of the Euphorbiaceae family with inestimable economic importance. Rubber tree breeding programs currently aim to improve growth and production, and the use of early genotype selection technologies can accelerate such processes, mainly with the incorporation of genomic tools, such as marker-assisted selection (MAS). However, few quantitative trait loci (QTLs) have been used successfully in MAS for complex characteristics. Recent research shows the efficiency of genome-wide association studies (GWAS) for locating QTL regions in different populations. In this way, the integration of GWAS, RNA-sequencing (RNA-Seq) methodologies, coexpression networks and enzyme networks can provide a better understanding of the molecular relationships involved in the definition of the phenotypes of interest, supplying research support for the development of appropriate genomic based strategies for breeding. In this context, this work presents the potential of using combined multiomics to decipher the mechanisms of genotype and phenotype associations involved in the growth of rubber trees. Using GWAS from a genotyping-by-sequencing (GBS) Hevea population, we were able to identify molecular markers in QTL regions with a main effect on rubber tree plant growth under constant water stress. The underlying genes were evaluated and incorporated into a gene coexpression network modelled with an assembled RNA-Seq-based transcriptome of the species, where novel gene relationships were estimated and evaluated through in silico methodologies, including an estimated enzymatic network. From all these analyses, we were able to estimate not only the main genes involved in defining the phenotype but also the interactions between a core of genes related to rubber tree growth at the transcriptional and translational levels. This work was the first to integrate multiomics analysis into the in-depth investigation of rubber tree plant growth, producing useful data for future genetic studies in the species and enhancing the efficiency of the species improvement programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA