Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 11(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37110377

RESUMO

Ralstonia solanacearum species complex (RSSC) cause several phytobacteriosis in many economically important crops around the globe, especially in the tropics. In Brazil, phylotypes I and II cause bacterial wilt (BW) and are indistinguishable by classical microbiological and phytopathological methods, while Moko disease is caused only by phylotype II strains. Type III effectors of RSSC (Rips) are key molecular actors regarding pathogenesis and are associated with specificity to some hosts. In this study, we sequenced and characterized 14 newly RSSC isolates from Brazil's Northern and Northeastern regions, including BW and Moko ecotypes. Virulence and resistance sequences were annotated, and the Rips repertoire was predicted. Confirming previous studies, RSSC pangenome is open as α≅0.77. Genomic information regarding these isolates matches those for R. solanacearum in NCBI. All of them fit in phylotype II with a similarity above 96%, with five isolates in phylotype IIB and nine in phylotype IIA. Almost all R. solanacearum genomes in NCBI are actually from other species in RSSC. Rips repertoire of Moko IIB was more homogeneous, except for isolate B4, which presented ten non-shared Rips. Rips repertoire of phylotype IIA was more diverse in both Moko and BW, with 43 common shared Rips among all 14 isolates. New BW isolates shared more Rips with Moko IIA and Moko IIB than with other public BW genome isolates from Brazil. Rips not shared with other isolates might contribute to individual virulence, but commonly shared Rips are good avirulence candidates. The high number of Rips shared by new Moko and BW isolates suggests they are actually Moko isolates infecting solanaceous hosts. Finally, infection assays and Rips expression on different hosts are needed to better elucidate the association between Rips repertoire and host specificities.

2.
Braz J Microbiol ; 52(4): 1665-1675, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34351603

RESUMO

The Burkholderia genus has high ecological and nutritional versatility, having species capable of causing diseases in animals, humans, and plants. During chronic infections in humans, biofilm formation is a characteristic often associated with strains from different species of this genus. However, there is still no information on the formation of biofilms by plant pathogenic strains of B. cenocepacia (Bce) lineages IIIA and IIIB and B. gladioli pv. alliicola (Bga), which are associated with onion bacterial scale rot in the semi-arid region of northeast Brazil. In this study, we performed an in vitro characterization of biofilm formation ability in different culture media by the phytopathogenic strains of Bce and Bga and investigated its relationship with swarming motility. Our results indicated the existence of an intraspecific variation in biofilm formation capacity in vitro by these bacteria and the existence of a negative correlation between swarming motility and biofilm formation for strains of Bce lineage IIIB. In addition, histopathological analyses performed using optical microscopy and scanning electron microscopy revealed the formation of biofilm in vivo by Bce strains in onion tissues.


Assuntos
Biofilmes , Burkholderia cenocepacia , Doenças das Plantas , Brasil , Burkholderia cenocepacia/classificação , Burkholderia cenocepacia/fisiologia , Burkholderia cenocepacia/ultraestrutura , Microscopia Eletrônica de Varredura , Cebolas/microbiologia , Doenças das Plantas/microbiologia
3.
Phytopathology ; 108(10): 1143-1153, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29688131

RESUMO

Grapevine bacterial canker, which is caused by Xanthomonas campestris pv. viticola, is one of the most important grapevine diseases in the northeastern region of Brazil. This disease causes severe damage and represents a high potential risk to the development of Brazilian viticulture. In turn, pigmented isolates pathogenic to cashew plant, making cashew fruit unfit for sale, also have been detected in Northeastern Brazil. Given that the taxonomic position of these bacteria is unclear, the multilocus sequence analysis (MLSA) technique, average nucleotide identity (ANI) values and tetranucleotide frequency correlation coefficients (TETRA) were used to analyze their phylogenetic relationship in relation to other Xanthomonas species. X. campestris pv. viticola was closely related to X. citri pv. mangiferaeindicae (repetitive-polymerase chain reaction [rep-PCR], MLSA, and ANI) and X. citri subsp. citri (MLSA and ANI). Pigmented isolates pathogenic to cashew plant were closely related to X. citri pv. anacardii (rep-PCR, MLSA, ANI, and TETRA). The results obtained in this study support the emendation of the description of X. citri pv. anacardii to include pigmented isolates of Xanthomonas pathogenic to cashew plant. In addition, the reclassification of X. campestris pv. viticola as X. citri pv. viticola comb. nov. is suggested.


Assuntos
Anacardium/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Xanthomonas/classificação , DNA Bacteriano/genética , Pigmentos Biológicos
4.
Microb Ecol ; 75(3): 555-561, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28920144

RESUMO

This study describes the first antibiofilm and antibacterial screening for plants from Caatinga against Ralstonia solanacearum, a causal agent of bacterial wilt that presents serious difficulties in control. There were prepared 22 aqueous extracts of plants collected in the Vale do Catimbau-PE, Brazil. The potential antibacterial activity was evaluated by absorbance in OD600 and the antibiofilm activity through the crystal violet method, both of them performed in microplate against isolates of R. solanacearum biofilm formers. The results of the screening showed that Jacaranda rugosa presented antimicrobial activity higher than 90%, while Harpochilus neesianus and Myroxylon peruiferum presented antibiofilm activity higher than 50% for all tested isolates. However, Croton heliotropiifolius showed both the activities, being thus very promising for application in the control of this phytopathogen. The search for viable alternatives to the development of new bioactive compounds safe for the environment, humans, and animals from an adverse and scarce environment such as the Caatinga and encouraged us to find plants that produce effective metabolites against phytopathogenic microorganisms. This in vitro screening is important to guide the development of new products in addition to guide research studies of bioactive compounds.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ralstonia solanacearum/efeitos dos fármacos , Traqueófitas/química , Biofilmes/crescimento & desenvolvimento , Agentes de Controle Biológico/farmacologia , Brasil , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas Medicinais , Ralstonia solanacearum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA